

FINAL REPORT

Environment Protection Authority South Australia

Stage 1 Environmental Assessment

Melrose Park EPA Assessment Area

21 May 2021

60610-137125 RP01 (Rev0) JBS&G

FINAL REPORT

Environment Protection Authority South Australia

Stage 1 Environmental Assessment

Melrose Park EPA Assessment Area

21 May 2021

60610-137125 RP01 (Rev0) JBS&G

Table of Contents

Abbr	eviatio	ns		Vİ		
Execu	utive Su	ummary		viii		
1.	Introduction					
	1.1	Overview				
	1.2	Objectiv	e	1		
2.	Scope	e of Work		2		
3.	Meth	odology .		3		
	3.1	Soil Vap	our Probe Installation and Sampling	3		
		3.1.1	Guidelines	3		
		3.1.2	Soil Vapour Probe Installation	3		
		3.1.3	Soil Vapour Sampling	4		
	3.2	Geotech	nical Soil Borehole Installation and Sampling	6		
	3.3	Ground	water Sampling	6		
4.	Adop	ted Tier 1	. Screening Levels	8		
	4.1	Soil Vap	our	8		
		4.1.1	Australian Screening Levels	8		
		4.1.2	United States Environmental Protection Agency	8		
	4.2	Groundwater				
		4.2.1	Overview	8		
		4.2.2	Assessment of Relevant Protected Environmental Values of Groundwater	9		
		4.2.3	Sources of Groundwater Tier 1 Screening Levels	11		
5.	Data	Quality A	ssessment	12		
6.	Results and Discussion					
	6.1	Soil Vap	our	13		
		6.1.1	Rainfall Prior to Soil Vapour Sample Collection	13		
		6.1.2	Soil Vapour Sampling Field Measurements – General Gases and			
		643	Colly and And Bard Day In Advant 2024			
		6.1.3	Soil Vapour Analytical Results – March 2021	13		
		6.1.4	Field Measurement of VOCs Vs Laboratory Reported CE Concentrations	14		
	6.2	Geotech	nical	14		
	6.3	Ground	water	14		
		6.3.1	Groundwater Sampling Field Observations	14		
		6.3.2	Groundwater Sampling Field Measurements – Water Quality Parameters	15		

		6.3.3	Groundwater Analytical Results – March 2021	15		
		6.3.4	Previous Groundwater Analytical Results at GW3034b	15		
7.	Conc	eptual Si	te Model	16		
8.	Vapo	our Intrus	ion Risk Assessment	18		
	8.1		al Exposure Pathways Requiring Further Assessment			
	8.2		ew of Inhalation Pathway Exposure Scenarios Requiring Further			
		Assessr	ment	18		
	8.3	Parame	eters Adopted in Modelling	18		
		8.3.1	Exposure Factors and Estimation of Inhalation Exposure	18		
		8.3.2	Characterisation of Exposure Areas	20		
		8.3.3	Characterisation of Site Physical Parameters	21		
		8.3.4	Characterisation of Chemicals of Interest	22		
		8.3.5	Source Data	22		
		8.3.6	Use of RISC Modelling Package	23		
	8.4		d Transport Modelling Outcomes – Calculation of Indoor Air tration	າວ		
	8.5		ment of Risk			
	6.5	8.5.1	Adopted Criteria for the Assessment of Risk			
		8.5.2	Risk Assessment Calculation			
	8.6		rison of Predicted TCE Indoor Air Concentrations within Residentia			
	8.0	Dwellings to TCE Response Ranges				
		8.6.1	Background			
		8.6.2	Residential Predicted Indoor Air TCE Concentration with Corresponding TCE Indoor Air Response Range Classification	26		
	8.7	Uncerta	ainty and Sensitivity Analysis			
			Site Specific Alpha Assessment			
		8.7.2	Source Concentration Data			
		8.7.3	Site Physical Parameter Data	27		
		8.7.4	Exposure Parameters to Characterise Receptors	27		
		8.7.5	Residential Dwelling, Commercial Building and Excavation Parameters	27		
		8.7.6	Uncertainty and Sensitivity Analysis Conclusions			
	8.8		onclusion			
9.	Conc					
э. 10.			lysis			
		·				
11.						
12.	Refe	rences		33		

List of Tables (In Text)

Table 3.1: Soil Vapour Probe Construction Summary (SVP01-SVP05)	4
Table 4.1: Summary of Assessment of Protected Environmental Values of Groundwater Based on Total Dissolved Solids at the Site	10
Table 4.2: Summary of Key Information for Relevant Registered Bores within the Melroson Park EPA Assessment Area	
Table 4.3: Adopted Tier 1 Screening Levels for Relevant Protected Environmental Values Groundwater	
Table 6.1: Soil Vapour Concentrations Exceeding Adopted Tier 1 Screening Levels	14
Table 6.2: Field Measurement of VOCs Vs Laboratory Reported CE Concentrations	14
Table 6.3: Summary of Geotechnical Parameter Results	14
Table 6.4: Groundwater Concentrations Exceeding Adopted Tier 1 Screening Levels at GW3034b	15
Table 6.5: Comparison of TCE Concentrations Reported at GW3034b in January 2021, February 2021 and March 2021	15
Table 7.1: Preliminary Conceptual Site Model	16
Table 8.1: Exposure Parameters – Resident	18
Table 8.2: Exposure Parameters – Commercial Worker	19
Table 8.3: Exposure Parameters – Subsurface Maintenance / Construction (Trench) Worl	
Table 8.4: Summary of Adjustment Factors and Formula for Calculation of Exposure Concentration for Inhalation Exposure	20
Table 8.5: Summary of Adopted Building Parameters – Residential Dwelling, Slab on Grad (Without Basement)	
Table 8.6: Summary of Adopted Building Parameters – Commercial Building	21
Table 8.7: Summary of Adopted Building Parameters – Subsurface Maintenance Trench , Excavation	
Table 8.8: Summary of Adopted Site Physical Parameters	21
Table 8.9: Summary of the Properties of the Chemicals of Interest (RAIS 2021)	22
Table 8.10: Summary of Toxicity and Background Intakes for Chemicals of Interest	22
Table 8.11: Summary of Adopted Source Data	22
Table 8.12: Predicted Indoor Air Concentrations (μg/m³)	23
Table 8.13: Summary of ILCR Calculations (Carcinogenic Endpoints)	23
Table 8.14: Summary of HI Calculations (Non-carcinogenic Endpoints)	23
Table 8.15: Predicted TCE Indoor Air Concentration (μg/m³) in Residential Dwellings with Corresponding TCE Indoor Air Response Range Classification	
Table 8.16: Sensitivity Analysis – Predicted Indoor Air Concentrations with Alternate Physical Parameter Data (μg/m³)	27
Table 8.17: Summary of Adopted Building Parameters – Residential Dwelling, Crawlspace	e 28
Table 8.18: Sensitivity Analysis – Predicted Indoor Air Concentrations for Slab on Grade Dwelling Vs Crawlspace Dwelling	28

List of Figures (In Appendices)

- Figure 1: Site Location Plan
- Figure 2: Soil Vapour Probe, Groundwater Well and Geotechnical Sample Locations March 2021
- Figure 3: Surface Water Bodies Within a 2 km Radius of the Melrose Park EPA Assessment Area
- Figure 4: Relevant Registered Bores Within a 2 km Radius of the Melrose Park EPA Assessment Area
- Figure 5: Chlorinated Ethene Soil Vapour and Groundwater Concentrations March 2021
- Figure 6: Areas of Potential Residential Landuse

List of Summary Tables (In Appendices)

Summary Tables - Results

- Summary of Soil Vapour Field Parameters: March 2021
- Soil Vapour Results: March 2021
- Summary of Groundwater Field Parameters: March 2021
- Groundwater Results: March 2021

Summary Tables - QA/QC

- Rinsate Sample Results Summary
- Helium Leak Test Results Summary
- Isopropanol Leak Test Results Summary
- Soil Vapour Summa Canister Sample Pressure Summary
- Soil Vapour RPD Value Summary Table
- Groundwater RPD Value Summary Table
- Trip Blank Results Summary
- Trip Spike Results Summary

Appendices

Figures

Summary Tables - Results

Summary Tables - QA/QC

Appendix A Soil Vapour Probe Soil Logs and Construction Details

Appendix B Photographs

Appendix C Calibration Certificates

Appendix D Waste Disposal Documentation

Appendix E Soil Vapour Field Sampling Sheets

Appendix F Groundwater Field Sampling Sheet

Appendix G Groundwater Bore Database Search Results (WaterConnect 2021)

Appendix H Data Quality Indicators and Quality Assurance / Quality Control Review

Appendix I Bureau of Meteorology Daily Weather Observations – March 2021

Appendix J Soil Vapour Laboratory Certificates of Analysis and Chain of Custody

Documentation

Appendix K Geotechnical Sample Laboratory Certificate of Analysis

Appendix L Groundwater Laboratory Certificates of Analysis and Chain of Custody

Documentation

Appendix M Modelling Spreadsheets

Appendix N ILCR and HI Calculation Spreadsheets

Abbreviations

Term	Definition				
API	American Petroleum Institute				
ASC NEPM	National Environment Protection (Assessment of Site Contamination) Measure				
ASTM	American Society for Testing and Materials				
AT	Averaging Time				
BoM	Bureau of Meteorology				
BTEX	Benzene, Toluene, Ethylbenzene, Xylenes				
CA	Contaminant concentration in air				
CEs	Chlorinated Ethenes				
cm	Centimetres				
COC	Chain of Custody				
CRC CARE	Cooperative Research Centre for Contamination Assessment and Remediation of the Environment				
CSM	Conceptual Site Model				
DCE	Dichloroethene				
DIT	Department for Infrastructure and Transport				
DO	Dissolved Oxygen				
DQIs	Data Quality Indicators				
EC	Electrical Conductivity				
ED	Exposure Duration				
EF	Exposure Frequency				
ET	Exposure Time				
EPA	Environment Protection Authority South Australia				
GC/MS	Gas Chromatography / Mass Spectrometry				
HI	Hazard Index				
HIL	Health Investigation Level				
ILCR	Increased Lifetime Cancer Risk				
inHg	Inches of Mercury				
IP	Interface Probe				
ITRC	Interstate Technology & Regulatory Council				
JBS&G	JBS&G Australia Pty Ltd				
J&E	Johnson and Ettinger				
km	Kilometres				
LDPE	Low Density Polyethylene				
LOR	Limit of Reporting				
m	Metres				
mbgl	Metres Below Ground Level				
ml	Millilitres				
ml/min	Millilitres per minute				
mm	Millimetres				
mTOC	Metres Below Top of Casing				
NAPL	Non-Aqueous Phase Liquid				
NATA	National Association of Testing Authorities				
NEPC	National Environmental Protection Council				
PARCCS	Precision, Accuracy, Representativeness, Comparability and Completeness and Sensitivity				
PCE	Tetrachloroethene				
PID	Photoionisation Detector				
ppm	Parts Per Million				
QA/QC	Quality Assurance/Quality Control				
RPD RSLs	Relative Percent Difference				
SHE	Regional Screening Levels				
	Standard Hydrogen Electrode				
SVME	Soil Vapour Monitoring Event Trichloroethane				
TCA TCE	Trichloroethane				
TDS TRH	Total Dissolved Solids Total Recoverable Hydrocarbons				
US EPA	IS EPA United States Environmental Protection Agency				

Term	Definition		
VC	Vinyl Chloride		
VIRA	Vapour Intrusion Risk Assessment		
VOCs	Volatile Organic Compounds		
μg/m ³	Micrograms per cubic metre		
-	On tables is "not calculated", "no criteria" or "not applicable"		

Executive Summary

JBS&G Australia Pty Ltd (JBS&G) was engaged by the Environment Protection Authority South Australia (EPA) to undertake the Stage 1 Environmental Assessment, a targeted soil vapour investigation in vicinity of existing groundwater well GW3034b and vapour intrusion risk assessment (VIRA) on the basis of these results, within the Melrose Park EPA Assessment Area, South Australia.

It is understood that in February 2021 the EPA was notified by the Department for Infrastructure and Transport (DIT) of groundwater contamination during routine investigations for the South Road upgrade. This testing reported elevated concentrations of metals and, of priority for the Stage 1 Environmental Assessment, chlorinated ethenes (CEs) at groundwater well GW3034b, including trichloroethene (TCE) at levels exceeding drinking water criteria. There were no other groundwater wells available in vicinity of GW3034b for testing. It is understood residents, workers and landowners in the Melrose Park EPA Assessment Area have been advised by EPA that groundwater should not be used for any purpose.

The objectives of the Stage 1 Environmental Assessment were as follows:

- Assess the nature and extent of CE soil vapour contamination in the vicinity of groundwater well GW3034b;
- Identify potential source sites of CE contamination (based on the soil vapour data collected as part of these works); and
- Assess the risk potentially posed by CE contamination to identified receptors in properties in close proximity of GW3034b via the inhalation pathway.

The works undertaken to address the above objectives included the following:

- Installation of five soil vapour probes at targeted locations in the vicinity of groundwater well GW3034b;
- Sampling of the five newly installed soil vapour probes with analysis for CEs;
- Sampling of existing groundwater well GW3034b with analysis for CEs;
- Drilling of one geotechnical bore with analysis for geotechnical parameters; and
- Complete a VIRA on the basis of the soil vapour and geotechnical data described above.

Based on the outcomes of the targeted soil vapour investigation in the vicinity of existing groundwater well GW3034b and VIRA, and subject to the limitations in **Section 11**, the following was concluded:

- Site contaminations exists within the Melrose Park EPA Assessment Area in accordance with the definition provided in the Environment Protection Act 1993;
- Elevated CE concentrations (namely TCE and 1,1-dichloroethene [1,1-DCE]) were reported
 above the adopted soil vapour Tier 1 screening levels at all five soil vapour probe locations.
 The lateral extent of the soil vapour plume is unknown, and hence it is unknown whether
 higher CE concentrations are present within the Melrose Park EPA Assessment Area than
 those which have been reported to date;
- It is not possible to identify potential source sites of contamination based on the data collected to date; and
- No unacceptable risks via the vapour inhalation pathway were identified for residents (slab on grade dwellings without basements and crawlspace), commercial / industrial workers (slab on grade buildings) and subsurface maintenance / construction workers in subsurface

maintenance trenches / excavations installed to a maximum depth of 1 metres below ground level (mbgl) in outdoor areas, noting this conclusion is based on the concentrations reported to date in the Melrose Park EPA Assessment Area and site specific geotechnical data from a single sample location.

The following data gaps were identified following completion of the targeted soil vapour investigation in vicinity of existing groundwater well GW3034b and VIRA:

- The potential source(s) of the CE impacts has/have not been identified, noting no site history investigation has been completed for the Melrose Park EPA Assessment Area to date;
- The extent of the groundwater TCE plume has not been delineated laterally or vertically;
- The extent of the soil vapour TCE plume has not been delineated laterally;
- Limited geotechnical information is available;
- No indoor air testing has been completed to date to validate modelling;
- No temporal data is available (groundwater, soil vapour and geotechnical); and
- The potential influences of preferential pathways are not understood, noting the source(s) of the CE impacts are required to be identified before this can be assessed.

1. Introduction

1.1 Overview

JBS&G Australia Pty Ltd (JBS&G) was engaged by the Environment Protection Authority South Australia (EPA) to undertake the Stage 1 Environmental Assessment, a targeted soil vapour investigation in the vicinity of existing groundwater well GW3034b and a vapour intrusion risk assessment (VIRA) on the basis of these results, within the Melrose Park EPA Assessment Area, South Australia. The location and extent of the Melrose Park EPA Assessment Area is shown in **Figure 1**.

It is understood that in February 2021 the EPA was notified by the Department for Infrastructure and Transport (DIT) of groundwater contamination during routine investigations for the South Road upgrade. This testing reported elevated concentrations of metals, and of priority for the Stage 1 Environmental Assessment, chlorinated ethenes (CEs) at groundwater well GW3034b, including trichloroethene (TCE) at levels exceeding drinking water criteria. There were no other groundwater wells available in the vicinity of GW3034b for testing. It is understood residents, workers and landowners in the Melrose Park EPA Assessment Area have been advised by EPA that groundwater should not be used for any purpose.

JBS&G was engaged by EPA to assess whether the reported groundwater contamination has the potential to result in elevated indoor air concentrations. This report presents the background, methodology, results of the targeted soil vapour investigation and VIRA.

1.2 Objective

The objectives of the Stage 1 Environmental Assessment were as follows:

- Assess the nature and extent of CE soil vapour contamination in the vicinity of groundwater well GW3034b;
- Identify potential source sites of CE contamination (based on the soil vapour data collected as part of these works); and
- Assess the risk potentially posed by CE contamination to identified receptors in properties in close proximity of GW3034b via the inhalation pathway.

2. Scope of Work

The following scope of work was undertaken in March 2021 in order to meet the objectives:

- Installation of five soil vapour probes (SVP01-SVP05) to a depth of 1.2 metres below ground level (mbgl) at targeted locations in the vicinity of groundwater well GW3034b;
- Drilling of one geotechnical bore (GB01) to a depth of 1.2 mbgl, with analysis of the sample from surface to 0.7 mbgl for geotechnical parameters;
- Sampling of the five newly installed soil vapour probes (SVP01-SVP05);
- Laboratory analysis of the soil vapour samples for the chemicals of interest (CEs);
- Sampling of existing groundwater well GW3034b;
- Laboratory analysis of the groundwater samples for the chemicals of interest (CEs);
- Comparison of the soil vapour and groundwater results against appropriate Tier 1 screening levels; and
- Complete a VIRA on the basis of the soil vapour and geotechnical data described above.

3. Methodology

3.1 Soil Vapour Probe Installation and Sampling

3.1.1 Guidelines

All soil vapour investigation works were undertaken in accordance with the methodologies outlined in the following guidance documents:

Australian Guidelines

- National Environment Protection (Assessment of Site Contamination) Measure, National Environment Protection Council, 1999 as amended 2013 (NEPC 2013); and
- Technical Report No. 13 Field Assessment of Gas, Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), 2009 (CRC CARE 2009).

International Guidelines

- Collecting and Interpreting Soil Gas Samples from the Vadose Zone, Publication Number 4741, American Petroleum Institute (API), 2005 (API 2005);
- Standard Practice for Active Soil Gas Sampling in the Vadose Zone for Vapor Intrusion Evaluations, American Society for Testing and Materials (ASTM), 2008 (ASTM 2008); and
- Vapor Intrusion Technical Guidance, New Jersey Department of Environmental Protection (NJ DEP), 2018 (NY DEP 2018).

3.1.2 Soil Vapour Probe Installation

A total of five soil vapour probes (SVP01-SVP05) were installed to a depth of 1.2 mbgl on 26 March 2021. The following methodology was undertaken for the installation of the soil vapour probes:

- The locations of the soil vapour probes were marked and cleared by a professional underground service locator following review of dial before you dig plans;
- Downhole drilling equipment was decontaminated using phosphate free detergent, followed by rinsing with deionised water prior to the commencement of drilling at each investigation location to minimise the potential for cross contamination. A rinsate sample was collected on the day of soil vapour probe installation to validate decontamination techniques;
- All soil vapour probes were installed using a hand auger with a diameter of 75 mm. The soils encountered were logged in accordance with the ASC NEPM (NEPC 2013) by an experienced environmental scientist. Soil logs are included in **Appendix A**. Photographs of the soils encountered are included in **Appendix B**. Soil samples were collected from the top of each lithological layer encountered for field screening of volatile organic compounds (VOCs) using a photoionisation detector (PID). The PID was calibrated using isobutylene to 100 parts per million (ppm) prior to the commencement of works. The PID calibration records are included in **Appendix C**;
- Following the drilling and soil logging, soil vapour probes were installed in all boreholes as follows:
 - A stainless-steel vapour probe with ¼ inch Teflon tubing connected was lowered so that
 the tip of the probe was above the base of the borehole (i.e. at a depth of approximately
 1.1 mbgl);
 - The bore annulus was backfilled with a clean washed sand pack to create a total sand pack interval of approximately 50 cm (i.e. from 0.7 mbgl to 1.2 mbgl);

- Approximately 5 cm of dry bentonite was placed above the sand pack;
- A slurry of cement powder, bentonite powder and water was used to backfill the borehole to a depth of approximately 0.2 mbgl; and
- The soil vapour probe was completed with a flush mounted gatic cover.
- Soil cuttings were transferred to a 205 L drum, with testing completed to enable offsite disposal. The drum was disposed offsite upon completion of the soil vapour probe installation program. Waste disposal documentation is included in **Appendix D**.

The locations of the soil vapour probes are shown in Figure 2.

The construction details of the soil vapour probes are summarised below in **Table 3.1**. Detailed soil vapour probe construction logs are included in **Appendix A**.

Table 3.1: Soil Vapour Probe Construction Summary (SVP01-SVP05)

Soil Vapour Probe ID	Date Installed	Total Depth of Borehole	Depth of Base of Probe	Sand Interval	Total Length of Teflon Tubing
		m			
SVP01	26-Mar-21	1.20	1.05	0.70 to 1.20	1.25
SVP02	26-Mar-21	1.20	1.05	0.70 to 1.20	1.25
SVP03	26-Mar-21	1.20	1.05	0.70 to 1.20	1.25
SVP04	26-Mar-21	1.20	1.05	0.70 to 1.20	1.25
SVP05	26-Mar-21	1.20	1.05	0.70 to 1.20	1.25

3.1.3 Soil Vapour Sampling

The five newly installed soil vapour probes (SVP01-SVP05) were sampled on 30 March 2021. The soil vapour samples were collected in specially prepared Summa canisters supplied by Eurofins MGT. The canisters were fitted with a calibrated regulator (flow controller) that when opened, allows air to be drawn in at a pre-set constant flow rate. The adopted flow rate for the investigation was 80 ml/min (approximate 10 minute sample time for the 1 L Summa canister).

The following soil vapour sampling methodology was undertaken:

- The gatic cover was removed from the soil vapour probe and a visual inspection of the Teflon tubing conducted in order to detect any damage to the tubing. No damage was observed to any of the soil vapour probes;
- The Summa canister pressure was measured using the laboratory supplied pressure gauge and the reading compared to the initial canister pressure recorded by the laboratory. All canisters used in the soil vapour monitoring event (SVME) had a starting pressure of -30 inHg, indicating no ingress of ambient air during transit to site;
- The Summa canister was then fitted with a flow controller, and the sampling train
 assembled. A shut in test was completed to ensure connections were adequate with no
 minor leaks. This was completed by closing off the soil vapour probe, and then using a
 syringe attached to a pressure gauge to create a vacuum. The vacuum was maintained with
 no loss of pressure for 30 seconds in all soil vapour probes;
- A pressure test was conducted to ensure a significant vacuum was not formed when purging soil vapour (i.e. ensure there was sufficient soil vapour present to sample) and ensure no water was present in the soil vapour probe. This was undertaken using a syringe attached to a pressure gauge to remove the approximate volume of the Teflon tubing of the soil vapour probe, while monitoring pressure – no vacuum was generated during this step for any of the soil vapour probes, nor was any water noted in the Teflon tubing;
- A leak test of the soil vapour probe was then undertaken using helium. A background measurement of helium in ambient air was first recorded, followed by a background

measurement of helium in the soil vapour probe. A shroud of volume 35 L was placed over the soil vapour probe and sampling train, and helium was pumped into the shroud at a rate of 15 L/min for five minutes. The helium detector was connected for the entire period and helium measurements recorded at 1 minute intervals for a total of five minutes. It is noted that the shroud was flush with ground level, with no significant gaps present between the shroud and ground. The helium concentration within the shroud was recorded following the leak testing of the soil vapour probe and sampling train. If there was greater than 10 % helium in the sampling line, then the soil vapour probe was deemed compromised and was not sampled – this did not occur for any of the soil vapour probes. The helium detector calibration certificate is included in **Appendix C**;

- Paper towel soaked with isopropanol (approximately 20 mL) was placed in a small jar, open at the top, inside the shroud along with the sampling train connected to the soil vapour probe. Soil vapour was then sampled, and the start sampling time was recorded. The following was completed during sampling:
 - A pressure gauge (connected as part of the sample train) was used to determine whether a vacuum developed in the soil vapour probe during sampling – this did not occur for any of the soil vapour probes; and
 - Measurement of VOCs within the shroud was completed using a PID throughout sampling, with the maximum and average PID value recorded.
- Once the pressure reading on the flow regulator was between approximately -5 inHg
 and -10 inHg, sampling was ceased and the canister valve closed tight to prevent sample
 loss. The end sampling time was recorded. The Summa canister pressure (post sampling)
 was measured using the laboratory supplied pressure gauge;
- Post sampling general gas readings (carbon dioxide, methane, oxygen, hydrogen sulphide, carbon monoxide and balance) were measured with a landfill gas meter (GA5000), firstly in ambient air and then in the soil vapour probe. PID measurements were also collected at this time. The soil vapour probe was purged with the GA5000 and PID until measurements stabilised (approximately 30 seconds);
- Duplicate samples were collected with a Summa canister prepared in the same way as detailed above, using a duplicate sampling bar (provided by the laboratory) to connect both Summa canisters (each with its own flow controller) to the soil vapour probe;
- A shroud sample was collected to assess the concentration of isopropanol within the shroud.
 The shroud sample was collected with a Summa canister prepared in the same way as detailed above. The Summa canister was placed inside the shroud, along with the primary sample Summa canister and sampling train. Sampling occurred for the same period as the primary soil vapour sample at that location, with the same rate on the flow controller to enable comparison between isopropanol concentrations within primary samples and the shroud sample; and
- Samples were transported in pelican boxes to the laboratory for selected chemical analysis under chain of custody (COC) documentation. The primary and duplicate soil vapour samples were analysed using gas chromatography / mass spectrometry (GC/MS) for the chemicals of interest (CEs including TCE, tetrachloroethene [PCE], cis-1,2-dichloroethene [cis-1,2-DCE], trans-1,2-dichloroethene [trans-1,2-DCE], 1,1-dichloroethene [1,1-DCE] and vinyl chloride [VC]) and isopropanol (for quality control [QC] purposes), while the shroud sample was analysed for isopropanol only.

Soil vapour probe locations are shown in **Figure 2**. The soil vapour field sampling sheets are included in **Appendix E**.

3.2 Geotechnical Soil Borehole Installation and Sampling

One geotechnical soil borehole (GB01) was installed to a depth of 1.2 mbgl on 26 March 2021. This geotechnical soil borehole was installed approximately 2 m south of soil vapour probe SVP02 and approximately 4 m south of groundwater well GW3034b, in an unsealed area adjacent to the footpath.

The following methodology was undertaken for the installation of the geotechnical borehole:

- The location of the geotechnical soil borehole was marked and cleared by a professional underground service locator following review of dial before you dig plans;
- The geotechnical soil borehole was installed by geoprobe techniques (direct push), with the undisturbed soil core (surface to 1.2 mbgl) retained in the geoprobe plastic sleeve (sealed with end caps) for geotechnical analysis. Due to the soil core collection methods logging was not possible, so the soils at GB01 have been assumed to be consistent with those observed during the installation of soil vapour probe SVP02 (approximately 2 m north of GB01), noting that the soil type reported by the laboratory at GB01 (brown clay from 0.6 mbgl to 0.7 mbgl) was consistent with the soil type reported at SVP02 at this depth (brown silty sandy clay). The borelog for GB01 is included in **Appendix A**;
- Soil cuttings from soil vapour probe SVP02 were used to reinstate the geotechnical soil borehole to prevent tripping hazards; and
- The geotechnical sample (soil core) was transported to the laboratory for geotechnical analysis immediately following completion of drilling. The geotechnical sample (soil core) from 0.6 mbgl to 0.7 mbgl was analysed for the following:
 - Bulk and dry density;
 - Void ratio;
 - Moisture content including degree of saturation;
 - Porosity; and
 - Specific gravity/soil particle density.

The geotechnical sample location is shown in Figure 2.

3.3 Groundwater Sampling

All groundwater investigation works were undertaken in accordance with the methodologies outlined in the following guidance documents and JBS&G standard operating procedures:

- The ASC NEPM (NEPC 2013);
- Regulatory monitoring and testing Groundwater sampling, Environment Protection Authority South Australia, 2019 (EPA 2019a);
- AS/NZS 5667.1: Water quality Sampling, Part 1: Guidance on the design of sampling programs, sampling techniques and the preservation and handling of samples, Australian / New Zealand Standards, 1998a (Australian / New Zealand Standards 1998a); and
- AS/NZS 5667.11: Water quality Sampling, Part 11: Guidance on sampling of groundwaters, Australian / New Zealand Standard, 1998b (Australian / New Zealand Standards 1998b).

Existing groundwater well GW3034b was sampled on 30 March 2021 using low flow techniques. The following groundwater sampling methodology was undertaken:

 The Interface Probe (IP) and low flow pump were decontaminated using phosphate free detergent, followed by rinsing with deionised water prior to the commencement of

sampling. A rinsate sample was collected off the clean low flow pump to validate decontamination procedures;

- The groundwater well was gauged prior to sampling using an IP to measure the depth to water, depth to non-aqueous phase liquid (NAPL), if present, and total depth;
- The groundwater well was then sampled using low flow techniques, as follows:
 - Dedicated low-density polyethylene (LDPE) twin tubing was attached to the low flow pump. The low flow pump was lowered into the groundwater well so that the pump intake point was set in the approximate centre of the water column. The depth of the base of the pump (intake point) was recorded on the field sampling sheet;
 - The low flow pump was then used to purge the groundwater well at a rate to establish a stabilised pumping rate while minimising drawdown. A maximum drawdown of 100 mm was adopted for the investigation;
 - o Following the establishment of the flow rate, water quality parameters (including dissolved oxygen [DO], redox potential, electrical conductivity [EC], temperature and pH) were measured to determine when purging was complete (i.e. when water quality parameters were considered stable in accordance with EPA [2019a]). Water quality parameters were recorded every 3 minutes along with the depth to water and time on the groundwater field sampling sheet. The presence or absence of visual and/or olfactory evidence of contamination, turbidity and colour were also noted on the field sampling sheet. The water quality meter was calibrated prior to sampling, with the calibration record provided in **Appendix C**; and
 - Following stabilisation of indictor parameters, a groundwater sample was collected in appropriately preserved sample bottles for the chemicals of interest (provided by the laboratory) using the same method employed throughout purging. Duplicate samples were also collected in this manner.
- Samples were transported in a chilled cool box to the laboratory for selected chemical
 analysis under COC documentation. The primary, duplicate and trip blank samples were
 analysed for the chemicals of interest (CEs including TCE, PCE, cis-1,2-DCE, trans-1,2-DCE,
 1,1-DCE and VC), while the trip spike sample was analysed for total recoverable
 hydrocarbons (TRH) and benzene, toluene, ethyl benzene and xylenes (BTEX); and
- All purge water was transferred to a 50 L drum and disposed offsite upon completion of groundwater sampling. Waste disposal documentation is included in Appendix D.

The location of groundwater well GW3034b is shown in **Figure 2**. The groundwater field sampling sheet is included in **Appendix F**.

4. Adopted Tier 1 Screening Levels

4.1 Soil Vapour

4.1.1 Australian Screening Levels

Investigation levels presented within the ASC NEPM (NEPC 2013) were adopted in the first instance to assess soil vapour results.

The ASC NEPM (NEPC 2013) provides *Interim Soil Vapour Health Investigation Levels* (*HILs*) *for Volatile Organic Chlorinated Compounds* for selected volatile chlorinated compounds (PCE, TCE, cis-1,2-DCE, VC and 1,1,1-trichloroethane [1,1,1-TCA]) which are specific to various ASC NEPM (NEPC 2013) land use scenarios. The derivation of these HILs is simple though conservative and is based on acceptable indoor air concentrations (based on US EPA guidelines) with an attenuation factor of 0.1 applied to account for the attenuation factor between concentrations in soil gas immediately below the building foundation and indoor air concentrations.

ASC NEPM (NEPC 2013) land use scenario A / B (residential land use) and land use scenario D (commercial land use) have been adopted for assessing the potential risks to human health via the vapour inhalation pathway. The HILs are based on generally conservative assumptions for the estimated allowable exposure dependant on land use. An exceedance of a screening level does not indicate that there is an unacceptable risk to human health, but rather that further site-specific assessment is required to quantify the potential risk to human health in the selected land use scenario. Further site-specific assessment includes property specific sampling (indoor air and crawlspace) and/or vapour intrusion modelling.

It is noted that neither the ASC NEPM (NEPC 2013) nor the US EPA¹ (discussed further below) provide criteria for trans-1,2-DCE. In the absence of Tier 1 screening levels for trans-1,2-DCE, assessment against the Tier 1 screening level adopted for cis-1,2-DCE (that provided within the ASC NEPM [NEPC 2013]) has been undertaken. This is considered to be conservative, given the relative toxicity of trans-1,2-DCE compared to cis-1,2-DCE.

4.1.2 United States Environmental Protection Agency

The US EPA (2020) provides *Regional Screening Levels (RSLs)* for a large number of chemicals. In the absence of criteria in the ASC NEPM (NEPC 2013) for 1,1-DCE, the RSL for residential air has been adopted as the Tier 1 screening level for this chemical. The RSLs (US EPA 2020) provide a noncarcinogenic screening level for 1,1-DCE – a hazard index (HI) of 0.1 has been adopted for screening purposes in order to assess potential additive effects between chemicals.

The RSLs (US EPA 2020) are for ambient air rather than soil vapour. An attenuation factor has been applied to the ambient air guidelines using a soil vapour to indoor air attenuation factor of 0.1, as consistent with that adopted in the ASC NEPM (NEPC 2013) for the derivation of the HILs. The result of this is that the Tier 1 soil vapour screening level adopted for this assessment is 10 times greater than the RSL presented by the US EPA (2020) for ambient air.

4.2 Groundwater

4.2.1 Overview

The Environment Protection (Water Quality) Policy 2015 (WQEPP 2015) identifies a range of protected beneficial uses of underground waters in South Australia. EPA² provides the following hierarchical order for the protected environmental values of groundwater:

¹ Regional Screening Levels, United States Environmental Protection Agency, November 2020 (US EPA 2020).

² Guidelines for the assessment and remediation of site contamination, Environment Protection Authority South Australia, November 2019 (EPA 2019b).

- 1. Drinking water
- 2. Recreation and aesthetics
- 3. Aguatic ecosystem (marine and freshwater)
- 4. Primary industries (agriculture [irrigation, general water uses and livestock] and aquaculture).

In addition, human health in non-use scenarios (i.e. exposure to volatile contaminants via vapour intrusion) is required to be considered where volatile chemicals are present.

4.2.2 Assessment of Relevant Protected Environmental Values of Groundwater

The risk-based approach for assessing groundwater contamination outlined in the ASC NEPM (NEPC 2013) and by EPA (2019b) is based on protection of relevant (i.e. current or realistic) environmental values of groundwater. The assessment of relevant environmental values of groundwater at any given site includes the following in accordance with EPA (2019b):

- Assessment of environmental values of groundwater on the basis of total dissolved solids (TDS) –
 environmental values of groundwater which are assessed by this step include drinking water and
 primary industries (agriculture [irrigation, general water uses and livestock] and aquaculture).
 Recreation and aesthetics, and aquatic ecosystems (marine and freshwater) are not assessed on
 the basis of TDS. The TDS assessment is included in Section 4.2.2.1;
- Identification and assessment of surface water bodies within a 2 km radius of the site –
 environmental values of groundwater which are assessed by this step include recreation and
 aesthetics, and aquatic ecosystems (marine and freshwater). Drinking water and primary
 industries (agriculture [irrigation, general water uses and livestock] and aquaculture) are not
 assessed on the basis of proximity to surface water bodies. The surface water body assessment
 is included in Section 4.2.2.2; and
- 3. Identification and assessment of registered bores within a 2 km radius of the site environmental values of groundwater which are assessed by this step include drinking water, recreation and aesthetics, and primary industries (agriculture only [irrigation, general water uses and livestock]). The assessment of registered bores within a 2 km radius of the site is included in Section 4.2.2.3.

4.2.2.1 Assessment of Total Dissolved Solids at the Site

The WQEPP (2015) provides TDS ranges for the protected environmental values of groundwater. Where groundwater has TDS above the range for a particular protected environmental value, the groundwater quality is unlikely to support this particular protected environmental value of groundwater. However, environmental values of groundwater cannot be excluded on the basis of TDS alone

A summary of the assessment of protected environmental values of groundwater based on TDS at the site is included below in **Table 4.1**. The TDS reported at GW3034b (the only groundwater well present at the site to date) has been adopted for screening purposes.

Table 4.1: Summary of Assessment of Protected Environmental Values of Groundwater Based on Total Dissolved Solids at the Site

Protected environmental value of	TDS range	Lowest TDS reported	Relevant at the site				
groundwater	(WQEPP 2015)	at the site	based on TDS?				
Drinking water	Below 1,200 mg/L	2,800 mg/L ^{#1}	Not relevant				
Primary industries – irrigation and general	Below 3,000 mg/L		Relevant				
water uses							
Primary industries – livestock	Below 13,000 mg/L		Relevant				
Primary industries – aquaculture and human	Below 13,000 mg/L		Relevant				
consumption of aquatic foods							
Notes:							
#1: TDS calculated from the electrical conducti	vity reported at GW3034l	o (5.039 mS/cm).					

4.2.2.2 Assessment of Surface Water Bodies within a 2 km Radius of the Melrose Park EPA Assessment Area

An assessment of surface water bodies within a 2 km radius of the Melrose Park EPA Assessment Area was undertaken in order to assess whether surface water bodies were present within this radius of the site, and if present, whether there was potential inter-connectivity with groundwater.

There were no surface water bodies identified within a 2 km radius of the Melrose Park EPA Assessment Area. It is noted Brown Hill Creek (2.9 km north-east), Sturt River (2.3 km south-west) and the Oaklands Wetlands (2.5 km west) are the closest surface water bodies to the Melrose Park EPA Assessment Area (shown in **Figure 3**).

Given no surface water bodies are present within a 2 km radius of the site, aquatic ecosystems (marine and freshwater) and aquaculture are not relevant protected environmental values of groundwater for the Melrose Park EPA Assessment Area.

4.2.2.3 Assessment of Registered Bores within a 2 km Radius of the Melrose Park EPA Assessment Area

A search of the WaterConnect³ database was undertaken on 19 April 2021 in order to assess whether operational bores were present within a 2 km radius of the Melrose Park EPA Assessment Area, and if present, whether these bores were likely targeting the shallow aquifer and used for beneficial purposes.

The search identified a total of 1,231 registered bores within a 2 km radius of the Melrose Park EPA Assessment Area. The following registered bores within a 2 km radius of the site were then excluded:

- Bores with drillhole class of engineering;
- Bores which have been backfilled, abandoned, reported as dry and reported as not in use;
- Bores registered for environmental, drainage or investigation / observation / monitoring purposes;
- Bores with no listed purpose; and
- Bores installed within a deeper aquifer which has been assumed to be all bores reported to be installed in aquifers other than the Q1.

Following the above exclusions, a total of 116 bores remained, as follows:

- 107 bores were registered for domestic use;
- Six bores were registered for irrigation;

https://www.waterconnect.sa.gov.au/Systems/GD/Pages/Default.aspx (accessed online 19 April 2021)

- Two bores were registered for recreational / environmental use; and
- One bore was registered for industrial use.

Of the above relevant bores, two bores (6628-13583 and 6628-15413) are present within the Melrose Park EPA Assessment Area. A summary of the key information for these bores is included below in **Table 4.2**.

Table 4.2: Summary of Key Information for Relevant Registered Bores within the Melrose Park EPA Assessment Area

Registered Bore ID	Installed Depth (mbgl)	Standing Water Level (mbgl)	Purpose	Status	TDS (mg/L)
6628-15413	7.5	6	Domestic	Operational	1,732
6628-13583	14.6	3	Domestic	Operational	2,318

The relevant registered bores are shown in **Figure 4**. Information from the WaterConnect database for the relevant registered bores is included in **Appendix G**.

4.2.2.4 Summary of Relevant Protected Environmental Values of Groundwater

Based on the TDS assessment, the assessment of surface water bodies within a 2 km radius of the Melrose Park EPA Assessment Area and the registered bore search within a 2 km radius of the Melrose Park EPA Assessment Area, the following environmental values of groundwater have been considered as relevant at the site:

- Drinking water;
- · Recreation and aesthetics; and
- Irrigation.

4.2.3 Sources of Groundwater Tier 1 Screening Levels

Groundwater results were compared against the Tier 1 screening levels outlined in **Table 4.3** for the relevant protected environmental values of groundwater outlined in **Section 4.2.2.4**. It is noted the protected environmental values of groundwater are listed in hierarchical order.

Table 4.3: Adopted Tier 1 Screening Levels for Relevant Protected Environmental Values of Groundwater

Relevant Protected Environmental Values of Groundwater		Adopted Tier 1 Screening levels		
Hierarchical Description Order		Reference		
1	Drinking water	 ADWG^{#1} (NHMRC 2018) Health^{#2} ADWG^{#1} (NHMRC 2018) Aesthetics 		
2	Recreation and aesthetics	 ADWG^{#1} (NHMRC 2018) Health x10^{#3} ADWG^{#1} (NHMRC 2018) Aesthetics 		
3	Irrigation	No available criteria for the chemicals of interest (CEs) – assessed via collection of soil vapour data		
N/A	Vapour Inhalation	No available criteria for the chemicals of interest (CEs) – assessed via collection of soil vapour data		

Notes:

#1: Australian Drinking Water Guidelines 6, Version 3.5, National Health and Medical Research Council, 2011 Updated August 2018 (NHMRC 2018).

#2: Tier 1 screening level for TCE adopted from *Trichloroethene in drinking-water, Background document for development of WHO Guidelines for drinking-water quality,* World Health Organisation, 2020 (WHO 2020).

#3: As per the *Guidelines for Managing Risks in Recreational Water*, National Health and Medical Research Council, 2008 (NHMRC 2008), a recreational exposure is assumed to be consumption of 100 ml/day to 200 ml/day and thus drinking water criteria (which assumes consumption of 2 L/day) can be adjusted to account for this difference in exposure by multiplication of drinking water criteria by a factor of 10.

#4: Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council, 2000 (ANZECC 2000).

5. Data Quality Assessment

The data quality indicators (DQIs) are summarised in **Appendix H**. A detailed review of the quality assurance / quality control (QA/QC) measures implemented during the March 2021 works program to address the DQIs is also included in **Appendix H**.

Based on the results of the evaluation of the QA/QC data, it is considered that:

- The field and laboratory QA measures implemented provide an acceptable level of confidence that the data collected and reported is appropriately complete, comparable and representative; and
- The field and laboratory QC measures implemented provide an acceptable level of confidence that the data collected and reported is appropriately accurate and precise.

Therefore, the data collected during the March 2021 works program is reliable and suitable for the assessment of the condition of the site.

6. Results and Discussion

6.1 Soil Vapour

6.1.1 Rainfall Prior to Soil Vapour Sample Collection

Daily weather observation data from the Bureau of Meteorology (BoM) for March 2021 is included in **Appendix I**. The following was noted:

- Rainfall recorded within a 72 hour period of sampling (i.e. on 27, 28 and 29 March 2021) was
 4.6 mm;
- An additional 0.4 mm was reported two days prior to that (i.e. on 25 March 2021); and
- There were ten days of no rainfall prior to that (i.e. from 15 to 24 March 2021, inclusive).

The ASC NEPM (NEPC 2013) states that sampling of soil vapour directly after significant rainfall events (defined as greater than 25 mm) should be avoided for soil vapour probes installed to depths shallower than 1.5 mbgl. Given the rainfall reported in the days immediately prior to sampling was well below 25 mm, the sampling timing is considered appropriate to assess soil vapour concentrations.

6.1.2 Soil Vapour Sampling Field Measurements – General Gases and PID

Measurements of general gases (carbon dioxide, methane, oxygen, hydrogen sulphide, carbon monoxide and balance) and VOCs (via a PID) were recorded as part of the sampling procedure. These measurements have been summarised in the **Summary Tables**. The following was noted:

- Methane, carbon monoxide and hydrogen sulphide were reported at negligible concentrations;
- Carbon dioxide was reported at elevated concentrations between 1.6 %v/v and 4.6 %v/v, consistent with expectations of soil vapour at a depth of 1.2 mbgl within predominately sealed areas;
- Oxygen was reported at reduced concentrations as compared to ambient air (approximately 21 %), ranging between 17 %v/v and 19.5 %v/v. The oxygen concentrations are consistent with expectations of soil vapour at depths of 1.2 mbgl within predominately sealed areas, and with the reported carbon dioxide concentrations this indicates no significant leakage and/or short circuiting in the soil vapour probe;
- PID values ranged between 0.5 ppm at SVP04 to 2.7 ppm at SVP05. Field VOCs vs laboratory CEs are discussed in **Section 6.1.4**.

6.1.3 Soil Vapour Analytical Results – March 2021

The soil vapour laboratory certificates of analysis and COC documentation is included in **Appendix J**. Analytical results have also been tabulated and are included in the **Summary Tables**. The reported CE concentrations reported above the laboratory limit of reporting (LOR) are shown spatially in **Figure 5**.

TCE and 1,1-DCE were reported at concentrations above the adopted soil vapour Tier 1 screening levels – locations / concentrations exceeding the adopted soil vapour Tier 1 screening levels are summarised below in **Table 6.1**.

Table 6.1: Soil Vapour Concentrations Exceeding Adopted Tier 1 Screening Levels

Chemical	Soil Vapour Probe ID	Concentration µg/m³	Tier 1 Soil Vapour Screening Level Exceeded
TCE	SVP01	7,000	 Residential: 20 μg/m³
	SVP02	5,800 ^{#1}	Commercial / Industrial: 80 μg/m ³
	SVP03	8,100	
	SVP04	3,100	
	SVP05	14,000	
1,1-DCE	SVP01	540	Residential: 210 μg/m ³
	SVP02	400#1	
	SVP05	350	

Notes:

#1:Concentration reported in duplicate sample displayed as this concentration was higher than that reported in the primary sample.

6.1.4 Field Measurement of VOCs Vs Laboratory Reported CE Concentrations

The field measurements of VOCs collected via a PID were compared to the laboratory reported CE concentrations, as summarised in **Table 6.2**.

The laboratory reported CE concentrations aligned with the field measurement of VOCs.

Table 6.2: Field Measurement of VOCs Vs Laboratory Reported CE Concentrations

Soil Vapour Probe ID	PID (ppm)	Laboratory CEs (μg/m³) ^{#1}				
SVP01	1.3	7,640				
SVP02	0.9	6,236				
SVP03	1.6	8,164				
SVP04	0.5	3,151				
SVP05	2.7	14,691				
Notes:						
#1: The sum of all CEs reported above the LOR.						

6.2 Geotechnical

A geotechnical sample was collected from one location (GB01), with the core from 0.6 mbgl to 0.7 mbgl analysed for geotechnical parameters. Results of this analysis are included in the laboratory certificates of analysis in **Appendix K**, and are summarised below in **Table 6.3**. It is noted these results are similar to geotechnical sample results for the adjacent South-Eastern Edwardstown EPA Assessment Area⁴.

Table 6.3: Summary of Geotechnical Parameter Results

Sample Location	Bulk Density (t/m³)	Moisture (%)	Dry Density (t/m³)		Degree of Saturation (%)	Porosity
GB01	2.01	20.5	1.67	0.58	92.6	0.37

6.3 Groundwater

6.3.1 Groundwater Sampling Field Observations

The following observations were made during the sampling of GW3034b:

- Standing water level was reported at 3.372 m below top of casing (mTOC);
- NAPL was not observed;
- No visually obvious sheen or notable odour was observed;
- GW3034b reported a sustainable yield of approximately 180 ml/min; and

Reported in June 2020 Soil Vapour Monitoring Event and Update of Vapour Intrusion Risk Assessment, South-Eastern Edwardstown EPA Assessment Area, JBS&G Australia Pty Ltd, 10 July 2020 (JBS&G 2020).

• Groundwater was observed to be of medium to high turbidity.

6.3.2 Groundwater Sampling Field Measurements – Water Quality Parameters

The following water quality parameters were reported at GW3034b:

- DO was low (0.45 ppm);
- Redox potential was reported to be 422 mV Standard Hydrogen Electrode (SHE), which is indicative of oxidising conditions;
- pH was neutral (7.11 pH units); and
- EC was 5,039 μ S/cm and 9,720 μ S/cm (approximately 2,800 mg/L TDS).

6.3.3 Groundwater Analytical Results – March 2021

The groundwater laboratory certificates of analysis and COC documentation is included in **Appendix L**. Analytical results have also been tabulated and are included in the **Summary Tables**. The reported CE concentrations reported above the LOR are shown spatially in **Figure 5**.

TCE and 1,1-DCE were reported at concentrations above the adopted groundwater Tier 1 screening levels – concentrations exceeding the adopted groundwater Tier 1 screening levels are summarised below in **Table 6.4**. Site contaminations exists within the Melrose Park EPA Assessment Area in accordance with the definition provided in the *Environment Protection Act 1993*.

Table 6.4: Groundwater Concentrations Exceeding Adopted Tier 1 Screening Levels at GW3034b

Chemical	Concentration μg/L	Tier 1 Groundwater Screening Level Exceeded
TCE	1,200	 Drinking Water (Health): 8 μg/L
		 Recreation / Aesthetics (Health): 80 μg/L
1,1-DCE	110	 Drinking Water (Health): 30 μg/L
Notes:		
#1:Concentration repo	rted in duplicate sample displayed as t	his concentration was higher than that reported in the primary sample.

6.3.4 Previous Groundwater Analytical Results at GW3034b

A comparison of the TCE and 1,1-DCE concentrations reported at GW3034b in the three monitoring events completed to date is included in **Table 6.5**, noting the other CEs analysed (PCE, cis-1,2-DCE, trans-1,2-DCE and VC) were reported below the LOR in all samples in all monitoring events.

The TCE and 1,1-DCE concentrations reported at GW3034b were consistent in the three monitoring events completed to date.

Table 6.5: Comparison of TCE Concentrations Reported at GW3034b in January 2021, February 2021 and March 2021

•			
Sampling Date	TCE Concentration	1,1-DCE Concentration	Sampling Methodology
29-Jan-21	1,200 μg/L	110 μg/L	Hydrasleeve
26-Feb-21	1,200 μg/L	94 μg/L	Hydrasleeve
30-Mar-21	1,200 μg/L	110 μg/L	Low flow
	(1,400 μg/L in DUP01;	(130 μg/L in DUP01;	
	1,200 μg/L in SPLIT01)	93 μg/L in SPLIT01)	

7. Conceptual Site Model

The ASC NEPM (NEPC 2013) identifies a conceptual site model (CSM) as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The development of a CSM is an essential part of all site assessments.

The essential elements of a CSM (as outlined in the ASC NEPM [NEPC 2013]) include:

- Known and potential sources of contamination and contaminants of potential concern (COPCs);
- Potentially affected media (soil, sediment, groundwater, surface water, indoor or ambient air);
- Landuse and building design;
- Preferential pathways for vapour intrusion (where volatile chemicals are COPC);
- Human and ecological receptors; and
- Potential and complete exposure pathways.

The preliminary CSM is presented in **Table 7.1**.

Table 7.1: Preliminary Conceptual Site Model

Element of CSM	Discussion
Potential sources of contamination	At EPA's request, the investigation undertaken was targeted to one groundwater well (GW3034b) where elevated concentrations of CEs have been reported. No site history investigation has been undertaken to date to attempt to identify the potential source(s) of this contamination.
COPCs associated with the potential sources of contamination	At EPA's request, this investigation was limited to CEs.
Potentially affected media	SoilGroundwaterSoil vapourIndoor air
Landuse and building design	The Melrose Park EPA Assessment Area is predominately used for commercial / industrial purposes, however, two properties potentially used for residential purposes were identified (shown in Figure 6).
Geology	Limited intrusive investigations have been completed onsite to date, including the installation of five soil vapour probes to a depth of 1.2 mbgl and one groundwater well to a depth of 6.5 mbgl. Soils observed during the installation of the soil vapour probes and groundwater well included shallow surface fill consisting of sandy gravel / gravelly sand to a depth of approximately 0.1 mbgl to 0.3 mbgl, underlain by silty sandy clay at two locations to a depth of approximately 0.5 mbgl. Natural soils underlying the fill material consisted of silty sandy clay of medium to high plasticity.
	Based on a review of published geological survey information ⁵ , the site is likely to be underlain by the Pooraka Formation which consists of pale red brown sandy clay with carbonate of the Loveday Soil.
Hydrogeology	Based on the one groundwater well (GW3034b) currently present within the Melrose Park EPA Assessment Area, groundwater in the upper Quaternary aquifer (Q1 Aquifer) is encountered approximately 3.5 mbgl. Electrical conductivity was reported to be 5.039 mS/cm, which equates to an approximate TDS of 2,800 mg/L.

Adelaide Map Sheet SI54-9 1:125,000 Geological Survey of South Australia – Map Series Edition 1, Department of Mines, 1969 (DoM 1969).

Element of CSM	Discussion
	A search of the WaterConnect ⁶ database undertaken on 19 April 2021 identified two
	bores (6628-15413 and 6628-13583) installed in the Q1 aquifer within the Melrose
	Park EPA Assessment Area. The following was noted:
	Both bores were registered for domestic use and listed as operational;
	The bores were installed to depths of 7.5 mbgl and 14.6 mbgl, respectively;
	The standing water level was 6 mbgl and 3 mbgl, respectively; and
	The TDS was 1,732 mg/L and 2,318 mg/L, respectively.
	The Edwardstown Groundwater Prohibition Area (CDA) is present to the west (howard
	The Edwardstown Groundwater Prohibition Area (GPA) is present to the west (beyond South Road), north (beyond Marion Street) and north-west of the Melrose Park EPA
	Assessment Area (i.e. the Melrose Park EPA Assessment Area is outside of the current
	GPA). The purpose of the GPA is to prevent current and future landholders from
	accessing contaminated groundwater.
Preferential pathways for vapour	Detailed assessment of service trenches was beyond the scope of this investigation,
intrusion	_ · · · · · · · · · · · · · · · · · · ·
littusion	noting that the source of the contamination is currently unknown. Notwithstanding, the following was noted:
	There are a large number of services in footpaths and road verges within the Makessa Bark EDA Assessment Area, and those services transfers if filled with cand
	Melrose Park EPA Assessment Area, and these service trenches, if filled with sand
	or gravels, have the potential to act as preferential pathways for vapour migration;
	Significant fill has not been reported onsite during the investigations completed to data have yet investigations have been limited to feet at the Thora is not entirely
	date, however, investigations have been limited to footpaths. There is potential for more significant fill to be present on the various commercial / industrial
	· · · · · · · · · · · · · · · · · · ·
	properties within the Melrose Park EPA Assessment Area. If significant sandy / gravelly fill were present, this may have the potential to act as a preferential
	pathway for vapour migration; and
	Natural soils are expected to consist of the Pooraka Formation, which may be associated with hands of significantly possus materials.
Human and ocological recentors	associated with bands of significantly porous materials.
Human and ecological receptors	The following human receptors were identified under the current landuse: • Residents (adults and children);
	Sub-surface maintenance workers.
	The following ecological receptors were identified under the current landuse:
	Native flora and fauna;
	Introduced flora and fauna;
	Transitory wildlife; and
	Biota supporting ecological processes.
Potential exposure pathways	The following potential exposure pathways have been identified:
Fotential exposure patriways	
	Dermal contact with soil;Incidental ingestion of soil;
	·
	Consumption of fruit / vegetables / eggs grown in impacted soil;
	Dermal contact with groundwater (noting all residents, workers and landowners of gives within the Malagon Bark, EBA Accessment Area have been addited that
	sites within the Melrose Park EPA Assessment Area have been advised that
	groundwater [bore water] is contaminated and should not be used for any
	purpose);Incidental ingestion of groundwater (noting all residents, workers and landowners
	Incidental ingestion of groundwater (noting all residents, workers and landowners of sites within the Melrose Park EPA Assessment Area have been advised that
	groundwater [bore water] is contaminated and should not be used for any
	purpose);
	 Consumption of fruit / vegetables irrigated with groundwater (noting all residents,
	workers and landowners of sites within the Melrose Park EPA Assessment Area
	have been advised that groundwater [bore water] is contaminated and should not
	be used for any purpose); and
	Inhalation of vapour.

⁶ <u>http://www.waterconnect.sa.gov.au/Systems/GD/Pages/Default.aspx</u> (accessed online 19 April 2021).

8. Vapour Intrusion Risk Assessment

8.1 Potential Exposure Pathways Requiring Further Assessment

A number of potential exposure pathways were identified in the CSM (**Section 7**). Of these potential exposure pathways, further assessment has been undertaken for the inhalation pathway only, given to the following:

- There is no soil data available, and therefore it is not possible to assess the potential exposure pathways associated with soil (dermal contact with soil, incidental ingestion of soil, inhalation of dust, and consumption of fruit / vegetables / eggs grown in impacted soil); and
- All residents, workers and landowners of sites within the Melrose Park EPA Assessment Area have been advised that groundwater (bore water) is contaminated and should not be used for any purpose. To this end, potential exposure pathways associated with groundwater (dermal contact with groundwater, incidental ingestion of groundwater, and consumption of fruit / vegetables irrigated with groundwater) are not considered to be complete.

8.2 Overview of Inhalation Pathway Exposure Scenarios Requiring Further Assessment

The CSM (Section 7) identified the following human receptors:

- Residents (adults and children);
- Commercial / industrial workers; and
- Sub-surface maintenance workers.

As outlined in **Section 6.1.3**, TCE and cis-1,2-DCE were reported at concentrations exceeding the adopted soil vapour Tier 1 screening levels, as follows:

- TCE was reported at concentrations exceeding soil vapour Tier 1 screening levels for both residential and commercial / industrial landuse; and
- cis-1,2-DCE was reported at concentrations exceeding soil vapour Tier 1 screening levels for residential landuse.

Given the CEs were reported above the adopted soil vapour Tier 1 screening levels for both residential and commercial / industrial landuse, these scenarios require further assessment. In addition, there are no soil vapour Tier 1 screening levels for subsurface maintenance workers and hence this scenario also requires further assessment.

It is noted the risk assessment for residents and commercial/industrial workers is adequately protective of visitors to these sites.

8.3 Parameters Adopted in Modelling

8.3.1 Exposure Factors and Estimation of Inhalation Exposure

The adopted exposure factors for a resident are summarised below in **Table 8.1**.

Table 8.1: Exposure Parameters - Resident

Exposure Parameter	Units	Factor	Reference	
Exposure Frequency (EF)	days/year	365	ASC NEPM (NEPC 2013)	
Exposure Time (ET) – Indoors	hours	20	ASC NEPM (NEPC 2013)	
Exposure Duration (ED)	years	35	ASC NEPM (NEPC 2013)	
Averaging Time (AT) – non-Threshold	years	70	ASC NEPM (NEPC 2013)	
Averaging Time (AT) – Threshold years 35 ^{#1} ASC NEPM (NEPC 2013)			ASC NEPM (NEPC 2013)	
Notes:				
#1: Consistent with exposure duration.				

The adopted exposure factors for a commercial worker are summarised below in **Table 8.2**.

Table 8.2: Exposure Parameters – Commercial Worker

Exposure Parameter	Units	Factor	Reference	
Exposure Frequency (EF)	days/year	240	ASC NEPM (NEPC 2013)	
Exposure Time (ET) – Indoors	hours	8	ASC NEPM (NEPC 2013)	
Exposure Duration (ED)	years	30	ASC NEPM (NEPC 2013)	
Averaging Time (AT) – non-Threshold	years	70	ASC NEPM (NEPC 2013)	
Averaging Time (AT) – Threshold years		30#1	ASC NEPM (NEPC 2013)	
Notes:				
#1: Consistent with exposure duration.				

The adopted exposure factors for a subsurface maintenance / construction (trench) worker are summarised below in **Table 8.3**.

Table 8.3: Exposure Parameters – Subsurface Maintenance / Construction (Trench) Worker

Exposure Parameter	Units	Factor	Reference
Exposure Frequency (EF)	days/year	20	CRCCARE 2011 ^{#1}
Exposure Time (ET) – Indoors	hours	8	CRCCARE 2011 ^{#1}
Exposure Duration (ED)	years	30	CRCCARE 2011 ^{#1}
Averaging Time (AT) – non-Threshold	years	70	ASC NEPM (NEPC 2013)
Averaging Time (AT) – Threshold	years	30#2	ASC NEPM (NEPC 2013)

Notes:

#1: The ASC NEPM (NEPC 2013) does not provide EF, ET and ED for this exposure scenario and hence parameters provided by CRCCARE (2011) have been adopted.

#2: Consistent with exposure duration.

Inhalation exposures have been estimated by the approach outlined by US EPA⁷. Equations are provided below for estimating exposure concentrations for assessing cancer risks and for calculating hazard index (HI) from chronic exposures:

EC = Adjustment factor*CA

Adjustment factor = (ET*EF*ED)/AT

Where: EC – exposure concentration ($\mu g/m^3$);

CA – contaminant concentration in air ($\mu g/m^3$);

ET – exposure time (hours/day)

EF - exposure frequency (days/year)

ED – exposure duration (years)

AT – averaging time (hours),

= 70 years*365 days/year*24 hours/day, for non-threshold exposure

= ED in years*365 days/year*24 hours/day, for threshold exposure.

The adjustment factors for inhalation exposure, as calculated based on the above equations and exposure factors outlined above, are summarised below in **Table 8.4**.

Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment), United States Environment Protection Agency, January 2009 (US EPA 2009).

Table 8.4: Summary of Adjustment Factors and Formula for Calculation of Exposure Concentration for Inhalation Exposure

Receptor	Adjustment Factor – Cancer Risks (Non-Threshold Exposure)	Adjustment Factor – Hazard Index (Threshold Exposure)
Residential dwelling	0.42 * CA in dwelling	0.83 * CA in dwelling
(slab on grade without basement)		
Commercial building	9.4*10 ⁻² * CA in building	0.22 * CA in building
(slab on grade)		
Subsurface maintenance trench / excavation to	7.8*10 ⁻³ * CA in trench /	1.8*10 ⁻² * CA in trench /
1 mbgl	excavation to 1 mbgl	excavation to 1 mbgl

8.3.2 Characterisation of Exposure Areas

Residential Dwellings

The residential dwelling type of slab on grade has been considered, consistent with the likely construction of the residential properties in closest proximity to the investigation locations assessed during the Stage 1 Environmental Assessment. As no inspections / interviews have been completed to confirm the construction of these properties, the crawlspace dwelling scenario has been assessed in **Section 8.7**. It is noted that it is not possible to assess the slab on grade with basement dwelling scenario from the available soil vapour data.

The adopted residential dwelling parameters for a slab on grade dwelling are summarised below in **Table 8.5**. Fate and transport to residential dwellings of slab on grade construction has included assessment of diffusive and advective vapour movement.

Table 8.5: Summary of Adopted Building Parameters – Residential Dwelling, Slab on Grade (Without Basement)

Parameter	Adopted Value	Reference
Enclosed floor length	15 m	CRCCARE (2011) ⁸
Enclosed floor width	10 m	CRCCARE (2011)
Enclosed space height of upper floor(s)	2.4 m	CRCCARE (2011)
Foundation thickness	10 cm	CRCCARE (2011)
Ventilation / air exchanges (building)	0.6 h ⁻¹	CRCCARE (2011)
Fraction of foundation present as	0.001	CRCCARE (2011)
cracks		
Porosity in foundation cracks	0.38	CRCCARE (2011)
Water content in foundation cracks	0.12	CRCCARE (2011)
Q _{soil} :Q _{building}	0.005	CRCCARE (2011)

Commercial Buildings

Commercial buildings have been characterised as slab on grade structures and basements have not been considered.

The adopted commercial building parameters are summarised below in **Table 8.6**. Fate and transport to commercial buildings of slab on grade construction has included assessment of diffusive and advective vapour movement.

CRC CARE Technical Report No.10: Health screening levels for petroleum hydrocarbons in soil and groundwater, CRC for Contamination Assessment and Remediation of the Environment, September 2011 (CRCCARE 2011).

Table 8.6: Summary of Adopted Building Parameters - Commercial Building

Parameter	Adopted Value	Reference
Enclosed floor length	20 m	CRCCARE (2011)
Enclosed floor width	20 m	CRCCARE (2011)
Enclosed space height	3 m	CRCCARE (2011)
Foundation thickness	15 cm	CRCCARE (2011)
Ventilation / air exchanges (building)	0.83 h ⁻¹	CRCCARE (2011)
Fraction of foundation present as	0.001	CRCCARE (2011)
cracks		
Porosity in foundation cracks	0.38	CRCCARE (2011)
Water content in foundation cracks	0.12	CRCCARE (2011)
Q _{soil} :Q _{building}	0.005	CRCCARE (2011)

Sub-Surface Maintenance Trenches / Excavations

The adopted parameters for subsurface maintenance trenches / excavations are summarised below in **Table 8.7**. It is noted subsurface maintenance trenches / excavations are assumed to occur outside of buildings.

Table 8.7: Summary of Adopted Building Parameters – Subsurface Maintenance Trench / Excavation

Parameter	Adopted Value	Reference
Enclosed floor length	10 m	CRCCARE (2011)
Enclosed floor width	1 m	CRCCARE (2011)
Enclosed space height	1 m	CRCCARE (2011)
Foundation thickness	0.001 (i.e. no foundation)	CRCCARE (2011)
Ventilation / air exchanges	87.5 h ⁻¹	CRCCARE (2011)
Fraction of foundation present as	1 (i.e. no foundation)	CRCCARE (2011)
cracks		
Porosity in foundation cracks	1	CRCCARE (2011)
Water content in foundation cracks	0 (i.e. all air)	CRCCARE (2011)

8.3.3 Characterisation of Site Physical Parameters

Soils within the Melrose Park EPA Assessment Area were observed to include shallow surface fill consisting of sandy gravel / gravelly sand to a depth of approximately 0.1 mbgl to 0.3 mbgl, underlain by silty sandy clay at two locations to a depth of approximately 0.5 mbgl. Natural soils underlying the fill material consisted of silty sandy clay of medium to high plasticity. Clay was the predominant soil type reported in the surficial 1.2 m.

Geotechnical data is available for one location (GB01) – this data has been adopted for the site physical parameters (summarised in **Table 8.8**). It is noted published data for clayey soils have been adopted for comparison in the sensitivity analysis (**Section 8.7**).

Table 8.8: Summary of Adopted Site Physical Parameters

Parameter	Adopted Value	Reference
Total porosity	0.37	Site data (Section 6.2)
Water filled porosity	0.34 ^{#1}	Site data (Section 6.2)
Air filled porosity	0.03 ^{#1}	Site data (Section 6.2)
Bulk Density	2.01 t/m ³	Site data (Section 6.2)

Notes:

#1:Based on total porosity (0.37) and degree of saturation (92.6 %).

8.3.4 Characterisation of Chemicals of Interest

As outlined in **Section 8.1**, the chemicals exceeding the adopted soil vapour Tier 1 screening criteria and requiring further assessment are TCE and 1,1-DCE. The properties of the chemicals of interest (as per the Risk Assessment Information System⁹) are summarised in **Table 8.9**.

Table 8.9: Summary of the Properties of the Chemicals of Interest (RAIS 2021)

Chemical Properties	Henry's Law Constant at 25°C (-)	Diffusivity in Air (cm ² /s)	Diffusivity in Water (cm ² /s)	Water Solubility (mg/L)
TCE	0.403	6.87x10 ⁻²	1.02x10 ⁻⁵	1,280
1,1-DCE	0.107	8.63x10 ⁻²	1.10x10 ⁻⁵	2,420

Toxicity and background intake data for all chemicals requiring further assessment in the VIRA is summarised below in **Table 8.10**.

Table 8.10: Summary of Toxicity and Background Intakes for Chemicals of Interest

	Inhalation TRV	Inhalation TRV		
Chemical	Unit Risk (Carcinogenic Endpoints) (mg/m ³) ⁻¹	Inhalation Toxicity (Non-Carcinogenic Endpoints) (mg/m³)	Background (% of TRV)	Source
TCE	0.004	0.002	10	ASC NEPM (NEPC 2013)
1,1-DCE	N/A ^{#1}	0.2	0#2	US EPA (2002)#3

Notes:

8.3.5 Source Data

Soil vapour data from SVP01-SVP05 has been adopted for the Tier 1 assessment of the resident and commercial / industrial worker exposure scenarios. Only chemicals exceeding the adopted soil vapour Tier 1 screening criteria for each exposure scenario have been included in the quantitative assessment of risk (i.e. TCE and cis-1,2-DCE for residential dwellings; TCE for commercial buildings). As there are no soil vapour Tier 1 screening criteria for the exposure of subsurface maintenance / construction (trench) workers via the inhalation pathway for the chemicals of interest, both TCE and cis-1,2-DCE have been assessed for this exposure scenario.

The adopted source data, including maximum reported concentration and depth from source to building foundation or subsurface maintenance trench / excavation, are summarised below in **Table 8.11**.

Table 8.11: Summary of Adopted Source Data

Exposure Scenario	Adopted Concentration of Chemical of Interest (µg/m³)	Rationale	Adopted Depth from Source to Building Foundation	
Residential dwelling	 TCE: 14,000 μg/m³ (SVP05) cis-1,2-DCE: 540 μg/m³ (SVP01) 	Maximum TCE and cis-1,2- DCE concentrations reported to date in soil vapour	1 mbgl (depth from soil vapour probe to building foundation)	
Commercial building	• TCE: 14,000 μg/m³ (SVP05)	Maximum TCE concentration reported to date in soil vapour	1 mbgl (depth from soil vapour probe to building foundation)	
Subsurface maintenance trench / excavation to 1 mbgl	 TCE: 14,000 μg/m³ (SVP05) cis-1,2-DCE: 540 μg/m³ (SVP01) 	Maximum TCE and cis-1,2- DCE concentrations reported to date in soil vapour	0.1 mbgl (depth from soil vapour probe to base of trench)	

⁹ https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chemspef (accessed online 16 April 2021).

^{#1:}Classified as 'inadequate information to assess the carcinogenic potential' – NEPC (2013) states it is appropriate that a threshold dose-response (i.e. non-carcinogenic) approach is adopted.

^{#2:} As per the ASC NEPM (NEPC 2013) recommendation for cis-1,2-DCE.

^{#3:} Toxicological Review of 1,1-dichloroethylene, In Support of Summary Information on the Integrated Risk Information System, US Environmental Protection Agency, June 2002 (US EPA 2002).

8.3.6 Use of RISC Modelling Package

The Johnson and Ettinger Model Spreadsheet Tool, Version 6.0, US EPA, 2017 (US EPA 2017) has been utilised for the fate and transport modelling. The spreadsheet model uses J&E relationships in estimating transport of volatile constituents into human breathing zones. Exposure parameters, building and subsurface maintenance trench / excavation parameters, site physical parameters and chemical parameters have been updated as outlined in **Section 8.3.1** to **Section 8.3.5**.

8.4 Fate and Transport Modelling Outcomes – Calculation of Indoor Air Concentration

Modelling spreadsheets are included in **Appendix M**. The predicted indoor air concentrations for all exposure scenarios are summarised below in **Table 8.12**.

Table 8.12: Predicted Indoor Air Concentrations (µg/m³)

Exposure Scenario	Predicted Indoor Air Concentration (µg/m³)		
Exposure Scenario	TCE	1,1-DCE	
Residential dwelling (slab on grade without basement)	3.8*10 ⁻²	1.10*10 ⁻³	
Commercial building (slab on grade)	2.3*10 ⁻²	N/A	
Subsurface maintenance trench / excavation to 1 m bgl	5.4*10 ⁻³	1.60*10-4	

8.5 Assessment of Risk

8.5.1 Adopted Criteria for the Assessment of Risk

As consistent with the ASC NEPM (NEPC 2013), the following criteria have been adopted:

- Carcinogens an acceptable increased lifetime cancer risk (ILCR) of 1:100,000; and
- Non-carcinogens an acceptable total HI of 1.

8.5.2 Risk Assessment Calculation

Risk assessment calculations have been completed based on the following:

- Estimate of inhalation exposures for each population (Section 8.3.1);
- Unit risk and reference concentrations for each chemical (Section 8.3.4); and
- Fate and transport modelling outcomes (Section 8.4).

ILCR and HI calculation spreadsheets are included in **Appendix N** and summarised below in **Table 8.13** (ILCR) and **Table 8.14** (HI).

The calculated ILCR and HI for all exposure scenarios assessed were below the adopted criteria.

Table 8.13: Summary of ILCR Calculations (Carcinogenic Endpoints)

rance or a community or reserve and a community				
Exposure Scenario	TCE	Acceptable ILCR		
Residential dwelling	6.4*10 ⁻⁸	1*10-5		
(slab on grade without basement)				
Commercial building	8.6*10 ⁻⁹	1*10-5		
(slab on grade)				
Subsurface maintenance trench / excavation to 1 mbgl	1.7*10 ⁻¹⁰	1*10-5		

Table 8.14: Summary of HI Calculations (Non-carcinogenic Endpoints)

Chemical	TCE	1,1-DCE	Total HI	Acceptable HI
Residential dwelling	1.8*10-2	4.6*10-6	1.8*10-2	1.0
(slab on grade without basement)				
Commercial building	2.8*10-3	N/A	2.8*10 ⁻³	1.0
(slab on grade)				
Subsurface maintenance trench / excavation to 1 mbgl	5.4*10 ⁻⁵	1.4*10-8	5.4*10 ⁻⁵	1.0

8.6 Comparison of Predicted TCE Indoor Air Concentrations within Residential Dwellings to TCE Response Ranges

8.6.1 Background

The predicted TCE indoor air concentrations in residential dwellings have also been compared to the Government of South Australia TCE Indoor Air Response Ranges¹⁰. These response ranges were developed for sensitive land uses for use in determining the level of risk and the response required for each TCE concentration range from no action (<LOR) through to accelerated intervention (>200 μ g/m³).

The TCE Indoor Air Response Ranges and actions are shown below in Image 1.

It is noted the Indoor Air Response Ranges are not available for 1,1-DCE only. Given TCE is the chemical driving the risk at the site, the absence of Indoor Air Response Ranges for 1,1-DCE will not impact on the conclusions of this VIRA.

©JBS&G Australia Pty Ltd | 60610-137125 RP01 (Rev0)

¹⁰ TCE Indoor Air Response Ranges, Government of South Australia, 2014 (Government of South Australia 2014).

Image 1 – TCE Indoor Air Response Ranges (Government of South Australia 2014)

Indoor air level response range (TCE)

8.6.2 Residential Predicted Indoor Air TCE Concentration with Corresponding TCE Indoor Air Response Range Classification

A summary of the predicted TCE concentration in indoor air along with the corresponding TCE Indoor Air Response Range classification is included in **Table 8.15**.

Table 8.15: Predicted TCE Indoor Air Concentration (μg/m³) in Residential Dwellings with Corresponding TCE Indoor Air Response Range Classification

Evnocura Scanario		TCE Indoor Air Response Range Classification
Residential dwelling	0.04	Validation
(slab on grade without basement)		

8.7 Uncertainty and Sensitivity Analysis

The major uncertainties and sensitivities associated with the VIRA are as follows:

- Levels of chemicals as estimated by the sampling program completed in March 2021 for the Melrose Park EPA Assessment Area;
- Characterisation of the site physical parameters;
- Exposure parameters to characterise the receptors;
- Building and trench parameters; and
- Use of modelling package.

8.7.1 Site Specific Alpha Assessment

The site-specific alpha value (steady state attenuation factor between soil vapour and indoor air) for TCE (i.e. the risk driving contaminant of concern) was 2.1*10⁻⁶ for the residential dwelling with slab on grade construction without basement exposure scenario. This alpha is lower (i.e. indicative of greater attenuation between soil vapour and indoor air) than the default range provided by US EPA for this exposure scenario with the reported soils. This lower alpha is due to the adoption of site-specific geotechnical data for the soil parameters, noting that an alpha within the default range provided by US EPA is calculated when adopting the generic soil parameters for clay provided by CRCCARE (2011). The adoption of the site-specific geotechnical data for the soil parameters is discussed further below in **Section 8.7.3**.

It should be noted that the most reliable site-specific assessments of alpha are considered to be derived through the comparison of indoor air data and soil vapour data for locations beneath or immediately adjacent to a building where indoor air data was collected, however, no indoor air data has been collected within the Melrose Park EPA Assessment Area to date.

8.7.2 Source Concentration Data

Soil vapour data utilised within the VIRA was obtained during investigations completed in March 2021 for the Melrose Park EPA Assessment Area. The maximum concentrations reported in soil vapour have been adopted in the model – this is considered most appropriate given the key exposure pathway of concern is to residents and a potential residential dwelling is located in close proximity to the soil vapour probe where the highest TCE concentration was reported.

As outlined in the CSM, the investigation undertaken was targeted to one groundwater well (GW3034b) where elevated concentrations of CEs have been reported and no site history investigation has been undertaken to date to attempt to identify the potential source(s) of this contamination. Therefore, there is potential that higher concentrations of CEs are present within the Melrose Park EPA Assessment Area. In addition, data is from one monitoring event only (i.e. no seasonal data is available).

8.7.3 Site Physical Parameter Data

Geotechnical data is available for one location (GB01) and this data has been adopted in the model as the site physical parameters. In order to assess the sensitivity of the model to the site-specific soil parameter data adopted, the CRC CARE (2011) parameters for clay have been adopted in additional modelling. The adoption of the above alternate physical parameters results in the prediction of significantly higher indoor air concentrations for all exposure scenarios (summarised below in **Table 8.16**). Based on these higher indoor air concentrations:

- The calculated HI exceeded the adopted criteria for the residential slab on grade without basement scenario, and resulted in an alternate TCE Indoor Air Reponses Range classification of 'Investigation'. The ILCR was below the adopted criteria; and
- The calculated HI and ILCR was below the adopted criteria for the commercial building and subsurface maintenance trench / excavation to 1 mbgl.

Table 8.16: Sensitivity Analysis – Predicted Indoor Air Concentrations with Alternate Physical Parameter Data (µg/m³)

	Predicted Indoor Air TCE Concentration (μg/m³)							
Exposure Scenario	Physical Parameters Adopted in VIRA (Site Specific Geotechnical Data)	Sensitivity Analysis Physical Parameters (Clayey Soil; CRCCARE 2011)						
Residential dwelling (slab on grade without basement)	3.8*10 ⁻²	2.3						
Commercial building (slab on grade)	2.3*10 ⁻²	1.4						
Subsurface maintenance trench / excavation to 1 mbgl	5.4*10 ⁻³	3.4*10 ⁻²						

8.7.4 Exposure Parameters to Characterise Receptors

As outlined in **Section 8.3.1**, the exposure factors adopted are consistent with those adopted in the ASC NEPM (NEPC 2013) for residents and commercial workers, and CRC CARE (2011) for subsurface maintenance/excavation workers. Acknowledging the potential to be at home / work for longer hours, the following exposures have been assessed:

- Residents: 365 days/year; 24 hours/day, 35 years;
- Commercial works: 288 days/year (6 days/week with 4 weeks leave), 10 hours/day, 30 years;
 and
- Subsurface maintenance / excavation worker: 48 days/year (6 days/week for 8 weeks),
 10 hours/day, 30 years.

The above increased exposure does not alter the conclusions of the VIRA.

8.7.5 Residential Dwelling, Commercial Building and Excavation Parameters

As outlined in **Section 8.3.2**, the building and excavation parameters adopted are consistent with CRC CARE (2011). It is noted that by changing the floor area of a residential dwelling / commercial building (i.e. a 5 m by 5 m room) or the lateral extent of an excavation (i.e. 5 m length), the predicted indoor air concentrations are not altered.

As outlined in **Section 8.3.2**, the residential dwelling type of slab on grade has been considered, consistent with the likely construction of the residential properties in closest proximity to the investigation locations assessed during the Stage 1 Environmental Assessment. However, as no inspections / interviews have been completed to confirm the construction of these properties, the crawlspace dwelling scenario has also been assessed. Parameters adopted to assess this scenario are included in **Table 8.17**.

Table 8.17: Summary of Adopted Building Parameters – Residential Dwelling, Crawlspace

Adopted Value	Reference
15 m	CRCCARE (2011) ¹¹
10 m	CRCCARE (2011)
0.5 m	Assumption (crawlspace height is not
	provided by the ASC NEPM [NEPC
	2013] or CRCCARE [2011]).
1 (i.e. no attenuation)	US EPA (2015)#1
0 (i.e. no foundation)	CRCCARE (2011) – as provided for open
	space/recreational to simulate no
	concrete resistance
0.6 h ⁻¹	CRCCARE (2011) – as provided for a
	slab on grade dwelling. This is likely to
	be a conservative, however, has been
	adopted in the absence of site-specific
	measurement.
1	CRCCARE (2011) – as provided for open
	space/recreational to simulate no
	concrete resistance
0.38	CRCCARE (2011)
0.12	CRCCARE (2011)
0.005	CRCCARE (2011)
	10 m 0.5 m 1 (i.e. no attenuation) 0 (i.e. no foundation) 0.6 h ⁻¹ 1 0.38 0.12

Notes:

#1: The potential level of vapours in dwellings overlying a crawlspace has been estimated consistent with OSWER Technical Guide for Assessing and Mitigating the Vapour Intrusion Pathway from Subsurface Vapour Sources to Indoor Air, United States Environment Protection Agency, 2015 (US EPA 2015) which recommends that crawlspace vapours are assumed to be present at the same level in overlying residential dwellings. This is noted to be more conservative than the factor of 0.4 recommended to be adopted in CRCCARE Technical Report 23: Petroleum Hydrocarbon Vapour Intrusion Assessment: Australian Guidance, Cooperative Research Centre for Contamination and Remediation of the Environment, 2013 (CRCCARE 2013).

The predicted TCE indoor air concentrations are summarised below in **Table 8.18**. Although a higher indoor air concentration is predicted for the crawlspace scenario, this concentration remains in the same TCE Indoor Air Reponses Range classification of 'Validation', and the calculated ILCR and HI were below the adopted criteria.

Table 8.18: Sensitivity Analysis – Predicted Indoor Air Concentrations for Slab on Grade Dwelling Vs Crawlspace Dwelling

Exposure Scenario	Predicted Indoor Air TCE Concentration (µg/m³)	TCE Indoor Air Response Range Classification			
Slab on Grade Dwelling	3.8*10 ⁻²	Validation			
Crawlspace Dwelling	0.18	Validation			

8.7.6 Uncertainty and Sensitivity Analysis Conclusions

There are several factors which may have caused the risk and hazard estimates provided in VIRA to be underestimated, the most significant of which are as follows:

- The potential for higher concentrations to be present within the Melrose Park EPA
 Assessment Area, given the sampling completed to date was targeted to one existing
 groundwater well and there has been no site history assessment completed to date (and
 hence there is no understanding of the location of the source of the contamination); and
- The adoption of site-specific physical parameters from analysis of a single geotechnical sample from the site, noting a high degree of saturation was reported in this sample.

CRC CARE Technical Report No.10: Health screening levels for petroleum hydrocarbons in soil and groundwater, CRC for Contamination Assessment and Remediation of the Environment, September 2011 (CRCCARE 2011).

The remaining factors did not have a significant effect on the risk and hazard estimates.

8.8 VIRA Conclusion

Based on the data collected to date, and subject to the limitations in **Section 11**, no unacceptable risks were identified for the following exposure scenarios:

- Residents (slab on grade without basement and crawlspace);
- Commercial / industrial workers (slab on grade); and
- Subsurface maintenance / construction workers in subsurface maintenance trenches / excavations installed to a maximum depth of 1 mbgl in outdoor areas.

It is noted other residential building types have not been assessed (slab on grade with basement), nor have commercial buildings with basements, or subsurface maintenance trenches / excavations to depths greater than 1 mbgl / subsurface maintenance trenches / excavations installed within buildings.

9. Conclusions

Based on the outcomes of the targeted soil vapour investigation in vicinity of existing groundwater well GW3034b and VIRA, and subject to the limitations in **Section 11**, the following was concluded:

- Site contaminations exists within the Melrose Park EPA Assessment Area in accordance with the definition provided in the *Environment Protection Act 1993*;
- Elevated CE concentrations (namely TCE and 1,1-DCE) were reported above the adopted soil vapour Tier 1 screening levels at all five soil vapour probe locations. The lateral extent of the soil vapour plume is unknown, and hence it is unknown whether higher CE concentrations are present within the Melrose Park EPA Assessment Area than those which have been reported to date;
- It is not possible to identify potential source sites of contamination based on the data collected to date; and
- No unacceptable risks via the vapour inhalation pathway were identified for residents (slab
 on grade dwellings without basements and crawlspace), commercial / industrial workers
 (slab on grade buildings) and subsurface maintenance / construction workers in subsurface
 maintenance trenches / excavations installed to a maximum depth of 1 mbgl in outdoor
 areas, noting this conclusion is based on the concentrations reported to date in the Melrose
 Park EPA Assessment Area and site specific geotechnical data from a single sample location.

10. Data Gap Analysis

The following data gaps were identified following completion of the targeted soil vapour investigation in vicinity of existing groundwater well GW3034b and VIRA:

- The potential source(s) of the CE impacts has not been identified, noting no site history investigation has been completed for the Melrose Park EPA Assessment Area to date;
- The extent of the groundwater TCE plume has not been delineated laterally or vertically;
- The extent of the soil vapour TCE plume has not been delineated laterally;
- Limited geotechnical information is available;
- No indoor air testing has been completed to date to validate modelling;
- No temporal data is available (groundwater, soil vapour and geotechnical); and
- The potential influences of preferential pathways are not understood, noting the source(s) of the CE impacts are required to be identified before this can be assessed.

11. Limitations

This report has been prepared for use by the client who has commissioned the works in accordance with the project brief only, and has been based in part on information obtained from the client and other parties.

The advice herein relates only to this project and all results conclusions and recommendations made should be reviewed by a competent person with experience in environmental investigations, before being used for any other purpose.

JBS&G accepts no liability for use or interpretation by any person or body other than the client who commissioned the works. This report should not be reproduced without prior approval by the client, or amended in any way without prior approval by JBS&G, and should not be relied upon by other parties, who should make their own enquires.

Sampling and chemical analysis of environmental media is based on appropriate guidance documents made and approved by the relevant regulatory authorities. Conclusions arising from the review and assessment of environmental data are based on the sampling and analysis considered appropriate based on the regulatory requirements.

Limited sampling and laboratory analyses were undertaken as part of the investigations undertaken, as described herein. Ground conditions between sampling locations and media may vary, and this should be considered when extrapolating between sampling points. Chemical analytes are based on the information detailed in the site history. Further chemicals or categories of chemicals may exist at the site, which were not identified in the site history and which may not be expected at the site.

Changes to the subsurface conditions may occur subsequent to the investigations described herein, through natural processes or through the intentional or accidental addition of contaminants. The conclusions and recommendations reached in this report are based on the information obtained at the time of the investigations.

This report does not provide a complete assessment of the environmental status of the site, and it is limited to the scope defined herein. Should information become available regarding conditions at the site including previously unknown sources of contamination, JBS&G reserves the right to review the report in the context of the additional information.

12. References

American Petroleum Institute (2005) Collecting and Interpreting Soil Gas Samples from the Vadose Zone, Publication Number 4741.

American Society for Testing and Materials (2008) Standard Practice for Active Soil Gas Sampling in the Vadose Zone for Vapor Intrusion Evaluations.

Australian and New Zealand Environment and Conservation Council (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

Australian / New Zealand Standards (1998a) AS/NZS 5667.1: Water quality – Sampling, Part 1: Guidance on the design of sampling programs, sampling techniques and the preservation and handling of samples.

Australian / New Zealand Standard (1998b) AS/NZS 5667.11: Water quality – Sampling, Part 11: Guidance on sampling of groundwaters.

CRC for Contamination Assessment and Remediation of the Environment (2013) CRCCARE Technical Report 23: Petroleum Hydrocarbon Vapour Intrusion Assessment: Australian Guidance.

CRC for Contamination Assessment and Remediation of the Environment (2011) CRC CARE Technical Report No.10: Health screening levels for petroleum hydrocarbons in soil and groundwater.

CRC for Contamination Assessment and Remediation of the Environment (2009) Technical Report No.13: Field Assessment of Gas.

Department of Mines (1969) Adelaide Map Sheet SI54-9 1:125,000 Geological Survey of South Australia – Map Series Edition 1.

Environment Protection Authority South Australia (2019a) Regulatory monitoring and testing - Groundwater sampling.

Environment Protection Authority South Australia (2019b) Guidelines for the assessment and remediation of site contamination.

Environment Protection Act 1993.

Environment Protection (Water Quality) Policy 2015.

Government of South Australia (2014) TCE Indoor Air Response Ranges.

JBS&G Australia Pty Ltd (2020) June 2020 Soil Vapour Monitoring Event and Update of Vapour Intrusion Risk Assessment, South-Eastern Edwardstown EPA Assessment Area. 10 July 2020.

National Environment Protection Council (1999 as amended 2013) National Environment Protection (Assessment of Site Contamination) Measure.

National Health and Medical Research Council (2018) Australian Drinking Water Guidelines 6, Version 3.5.

National Health and Medical Research Council (2008) Guidelines for Managing Risks in Recreational Water

New Jersey Department of Environmental Protection (2018) Vapor Intrusion Technical Guidance.

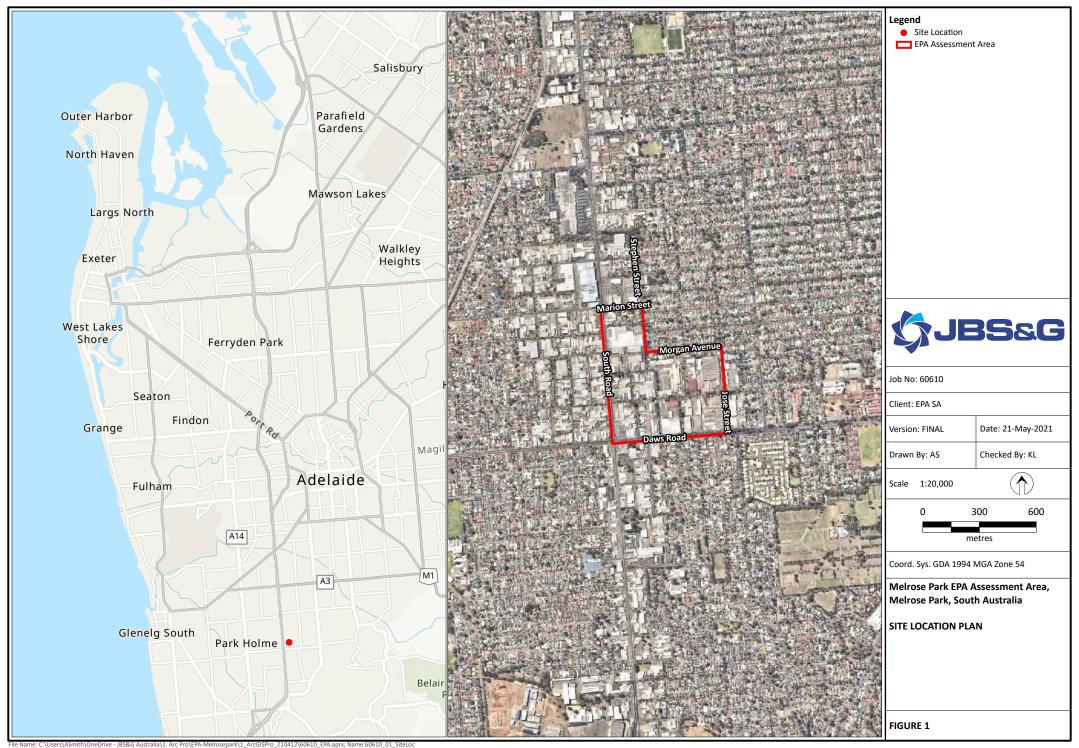
United States Environmental Protection Agency (2020) Regional Screening Levels, November 2020.

United States Environmental Protection Agency (2017) Johnson and Ettinger Model Spreadsheet Tool, Version 6.0.

United States Environment Protection Agency (2015) OSWER Technical Guide for Assessing and Mitigating the Vapour Intrusion Pathway from Subsurface Vapour Sources to Indoor Air.

United States Environment Protection Agency (2009) Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment).

United States Environmental Protection Agency (2002) Toxicological Review of 1,1-dichloroethylene, In Support of Summary Information on the Integrated Risk Information System.


World Health Organisation (2020) Trichloroethene in drinking-water, Background document for development of WHO Guidelines for drinking-water quality.

https://www.waterconnect.sa.gov.au/Systems/GD/Pages/Default.aspx (accessed online 19 April 2021)

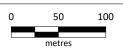
https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chemspef (accessed online 16 April 2021)

Figures

Legend

- EPA Assessment Area Boundary
- Groundwater Well Location
- Soil Vapour Probe Location
- Geotechnical Soil Location

Job No: 60610

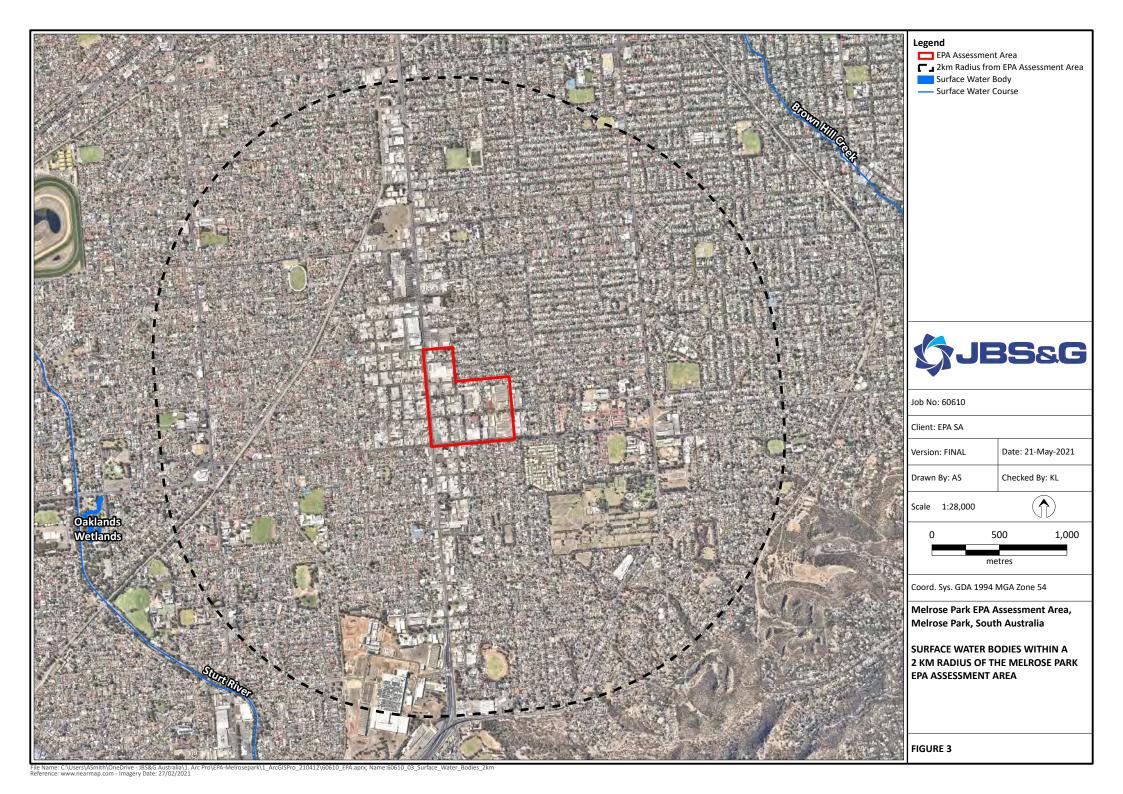

Client: EPA SA

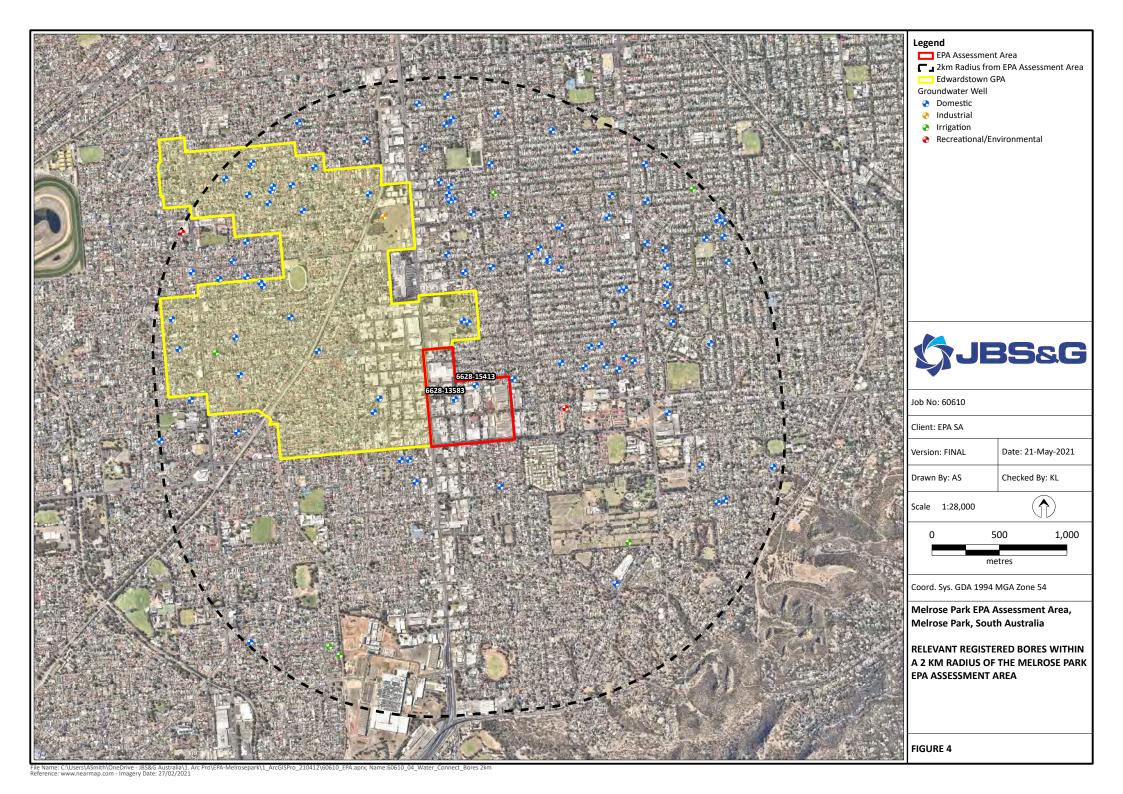
Version: FINAL Date: 21-May-2021

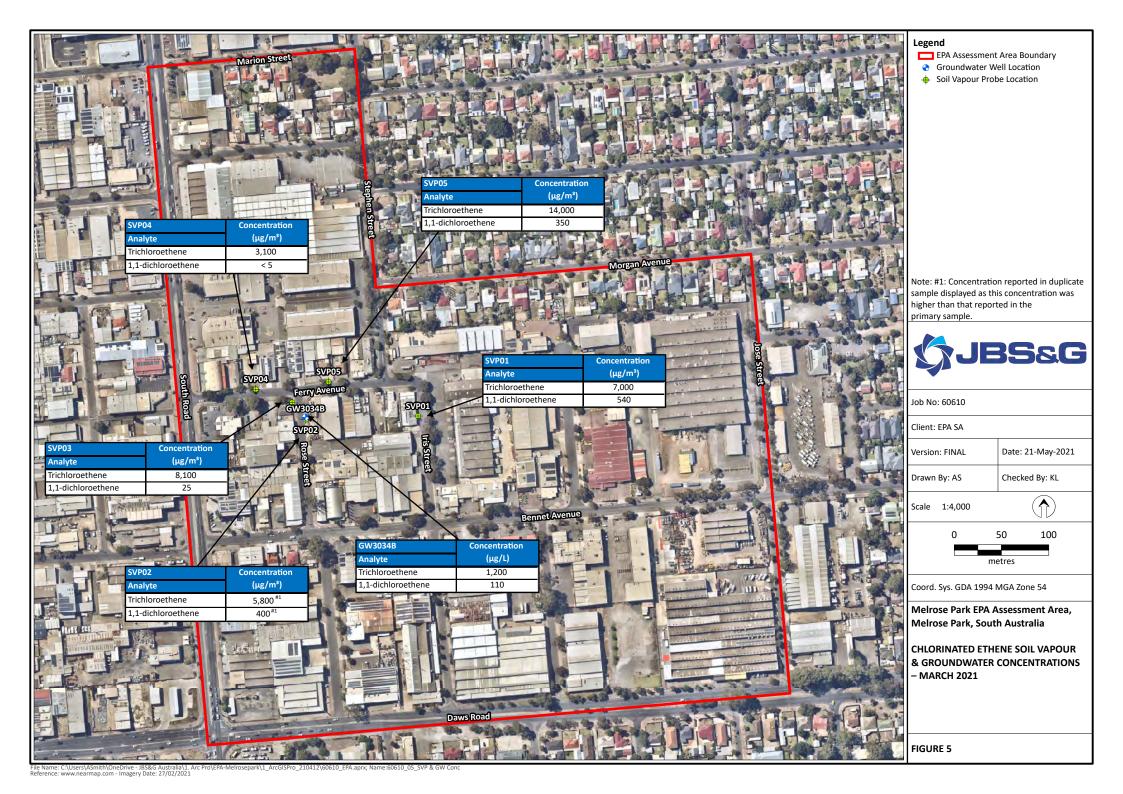
Drawn By: AS Checked By: KL

_____I

Scale 1:4,000



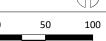

Coord. Sys. GDA 1994 MGA Zone 54


Melrose Park EPA Assessment Area, Melrose Park, South Australia

SOIL VAPOUR PROBE, GROUNDWATER WELL & GEOTECHNICAL SAMPLE LOCATIONS – MARCH 2021

FIGURE 2

EPA Assessment Area Boundary Potential Residential Landuse


Job No: 60610

Client: EPA SA

Date: 21-May-2021 Version: FINAL

Checked By: KL Drawn By: AS

Scale 1:4,000

Coord. Sys. GDA 1994 MGA Zone 54

Melrose Park EPA Assessment Area, Melrose Park, South Australia

AREAS OF POTENTIAL RESIDENTIAL LANDUSE

FIGURE 6

Summary Tables – Results

SUMMARY OF SOIL VAPOUR FIELD PARAMETERS: MARCH 2021

Project Number: 60610

Soil Vapour Probe ID	Sampling Date	Start Sampling Time	End Sampling Time	Total Sampling Time	Post Sampling Pressure	Sampling Flow Rate	Volume Purged Prior to Sampling		CO ₂	O ₂	Balance	H ₂ S	СО	PID
					-inHg	mL/min	mL	%v/v	%v/v	%v/v	%v/v	ppm	ppm	ppm
SVP01	30-Mar-21	9:05	9:15	10 minutes	-7.0	80.0	50.0	0.0	4.6	17.0	78.5	0.0	0.0	1.3
SVP02	30-Mar-21	10:17	10:26	9 minutes	-10.0	80.0	50.0	0.0	1.6	19.0	79.3	0.0	0.0	0.9
SVP03	30-Mar-21	9:45	9:56	11 minutes	-5.0	80.0	33.0	0.0	1.7	19.5	78.8	0.0	0.0	1.6
SVP04	30-Mar-21	7:40	7:51	11 minutes	-7.0	80.0	51.0	0.0	2.3	19.1	78.6	0.0	0.0	0.5
SVP05	30-Mar-21	8:26	8:36	10 minutes	-4.0	80.0	55.0	0.0	4.0	17.3	78.7	0.0	0.0	2.7

SOIL VAPOUR RESULTS: MARCH 2021

Project Number: 60610 Project Name: Melrose Park

\$JBS&G	%/8т Eurachloroethene	Ew/M Trichloroethene	高 cis-1,2-dichloroethene	لاكلام شعر trans-1,2-dichloroethene	加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加	Σω/ ^{βά}
EQL		2.7	5.0	5.0	5.0	3.0
NEPC (2013) ASC NEPM Interim HILs, Residential A/B - Soil Vapour	2,000	20	80	80 ^{#2}		30
US EPA (2020) RSL for Indoor Air x10, Resident, HI=0.1 ^{#1}					210 ^{#3}	
NEPC (2013) ASC NEPM Interim HILs, Commercial / Industrial D - Soil Vapour	8,000	80	300	300 ^{#2}		100
US EPA (2020) RSL for Indoor Air x10, Worker, HI=0.1 ^{#1}					880 ^{#3}	

Field ID	Sample Date	Lab Report Number						
SVP01	30-Mar-21	784189	100	7,000	< 5	< 5	540	< 3
SVP02	30-Mar-21	784189	36 ^{#1}	5,800 ^{#1}	< 6	< 6	400 ^{#1}	< 4
SVP03	30-Mar-21	784189	39	8,100	< 5	< 5	25	< 3
SVP04	30-Mar-21	784189	51	3,100	< 5	< 5	< 5	< 3
SVP05	30-Mar-21	784189	320	14,000	21	< 4	350	< 3

Env Stds Comments

#1:Factor of 10 used to convert indoor air criteria provided by US EPA (2017) to soil vapour criteria (i.e. attenuation factor of 0.1 applied, consistant with the ASC NEPM [NEPC 2013]).

#2:ASC NEPM (NEPC 2013) HIL for cis-1,2-DCE adopted in the absence of criteria provided in the ASC NEPM (NEPC 2013) or by US EPA (2017) for trans-1,2-DCE.

#3:US EPA (2017) RSL for 1,1-DCE adopted in the absence of criteria provided in the ASC NEPM (NEPC 2013).

Data Comments

#1:Concentration reported in duplicate sample displayed as this concentration was higher than that reported in the primary sample.

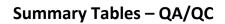
SUMMARY OF GROUNDWATER FIELD PARAMETERS: MARCH 2021

Project Number: 60610

Well ID	Date	LNAPL	SWL (30-Mar-21)	RL	RWL	Total Depth	Completion	Dissolved Oxygen	Conductivity	рН	Redox Redox		Redox		Temperature	Sample Information	Sample Observations
		mTOC	mTOC	mAHD	mAHD	mTOC		ppm	mS/cm		mV	SHE	°C				
GW3034b	30-Mar-21	-	3.372	31.187	27.815	6.620	Gatic	0.45	5.039	7.11	223.0	422.0		Low flow methods: total of 3.8 L purged over 21 minutes (approx flow rate of 180 ml/min), drawdown of 30 mm	No odour, no sheen		

GROUNDWATER RESULTS SUMMARY: MARCH 2021

Project Number: 60610 Project Name: Melrose Park


			Chlorinate	d Ethenes		
\$JBS&G	Tetrachloroethene	Trichloroethene	cis-1,2-dichloroethene	trans-1,2-dichloroethene	1,1-dichloroethene	Vinyl Chloride
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
EQI	1	1	1	1	1	1
1. Drinking Water - NHMRC (2011 updated 2018) ADWG: Health	50	^{#1} 8 ^{#2}			30	0.3
1. Drinking Water - NHMRC (2011 updated 2018) ADWG: Aesthetics						
2. Recreation / Aesthetics - NHMRC (2011 updated 2018) ADWG: Health x10	500	^{#1} 80 ^{#2}			300	3
2. Recreation / Aesthetics - NHMRC (2011 updated 2018) ADWG: Aesthetics						
3. Primary Industries - ANZECC (2000) Irrigation, long term						
3. Primary Industries - ANZECC (2000) Irrigation, short term						

Field ID	Sample Date	Lab Report						
GW3034B	30-Mar-21	784255	<25	1,200	<25	<25	110	<25

Env Stds Comments

#1:Insuffcient data to set a guideline value based on health considerations #2:Adopted from *Trichloroethene in drinking-water*, *Background document for* development of WHO Guidelines for drinking-water quality, World Health Organisation, 2020 (WHO 2020)

RINSATE RESULTS SUMMARY

Lab Report Number	784279	784255
Field ID	RB01	RB02
Sample Date	26-Mar-21	30-Mar-21
Sample Type	Rinsate	Rinsate

Chem_Group	ChemName	Units	EQL		
BTEXN	Benzene	μg/L	1	<1	
DIEM	Toluene	μg/L μg/L	1	<1	
	Ethylbenzene	μg/L	1	<1	
	Xylene (o)	μg/L	1	<1	
	Xylene (m & p)	μg/L	2	<2	
	Xylene Total	μg/l	3	<3	
	.,,	P-O/		-	
Chlorinated Alkanes	1,1,1,2-tetrachloroethane	μg/L	1	<1	
	1,1,1-trichloroethane	μg/L	1	<1	
	1,1,2,2-tetrachloroethane	μg/L	1	<1	
	1,1,2-trichloroethane	μg/L	1	<1	
	1,1-dichloroethane	μg/L	1	<1	
	1,2,3-trichloropropane	μg/L	1	<1	
	1,2-dichloroethane	μg/L	1	<1	
	1,2-dichloropropane	μg/L	1	<1	
	1,3-dichloropropane	μg/L	1	<1	
	Bromochloromethane	μg/L	1	<1	
	Carbon tetrachloride	μg/L	1	<1	
	Chloroethane	μg/L	1	<1	
	Chloromethane	μg/L	1	<1	
	Dichlorodifluoromethane	μg/L	1	<1	
	Dichloromethane	μg/l	1	<1	
	Trichlorofluoromethane	μg/L	1	<1	
Chlorinated Alkenes	1,1-dichloroethene	μg/L	1	<1	<1
	3-chloropropene	μg/l	1	<1	
	4-chlorotoluene	μg/L	1	<1	
	cis-1,2-dichloroethene	μg/L	1	<1	<1
	cis-1,3-dichloropropene	μg/L	1	<1	
	Tetrachloroethene	μg/L	1	<1	<1
	trans-1,2-dichloroethene	μg/L	1	<1	<1
	trans-1,3-dichloropropene	μg/L	1	<1	
	Trichloroethene	μg/L	1	<1	<1
	Vinyl Chloride	μg/L	1	<1	<1
Chlorinated Benzenes	1,2-Dichlorobenzene	μg/L	1	<1	
	1,3-dichlorobenzene	μg/L	1	<1	
	1,4-dichlorobenzene	μg/L	1	<1	
	Chlorobenzene	μg/L	1	<1	
MAH	1,2,4-trimethylbenzene	μg/L	1	<1	
	1,3,5-trimethylbenzene	μg/L	1	<1	
	Styrene	μg/L	1	<1	
	Total MAH	μg/l	3	<3	
	Bromobenzene	μg/L	1	<1	
	Isopropylbenzene	μg/L	1	<1	
Missellensenselt	4.2 dibasanasai		1		
Miscellaneous Hydrocarbons	1,2-dibromoethane	μg/L	1	<1	
	Bromomethane	μg/L	1	<1	
	Dibromomethane	μg/L	1	<1	
	lodomethane	μg/l	1	<1	
	4-Methyl-2-pentanone	μg/l	1	<1	
	Methyl Ethyl Ketone	μg/l	1	<1	
Organia Sulfur Campaur -1-	Combon distribute	/1	1	-1	
Organic Sulfur Compounds	Carbon disulfide	μg/l	1	<1	
Salvanta	Acatana	ug/I	1		
Solvents	Acetone	μg/l	1	<1	
Tribalomothanos	Dibromochloromethane	ug/I	1	-1	
Trihalomethanes		μg/L	1	<1	
	Chloroform Tribromomethane	μg/L	1	<5 <1	
	Bromodichloromethane	μg/L μg/L	1	<1 <1	
	bromodicinoromethane	µg/ ∟	1	1	

HELIUM LEAK TEST RESULTS SUMMARY - MARCH 2021

Project Number: 60610

Background Helium (Ambient Air)	Background Helium (Within Soil Vapour Probe) - Prior to Addition of Helium	Maximum Helium Reported Over 5 Minutes of Addiiton of Helium	Helium Level Above Background	Shroud Helium Concentration	Percentage Helium in Sample	Leak Test Assessment
ppm	ppm	ppm	ppm	ppm	%	-

Field ID	Sample Date							
SVP01	30-Mar-21	300	0	0	0	900,000	<0.01	Pass
SVP02	30-Mar-21	0	0	0	0	900,000	<0.01	Pass
SVP03	30-Mar-21	0	0	0	0	900,000	<0.01	Pass
SVP04	30-Mar-21	200	0	0	0	900,000	<0.01	Pass
SVP05	30-Mar-21	100	0	0	0	900,000	<0.01	Pass

ISOPROPANOL LEAK TEST RESULTS SUMMARY - MARCH 2021

Project Number: 60610

	. 2-Propanol	Percentage Isopropanol in Sample	Leak Test Assessment
	μg/m3	%	-
EQL	1.2	-	-

Field ID	Sample Date	Laboratory	Lab Report Number			
SHROUD01	30-Mar-21	Eurofins MGT	784189	930,000	-	-
SVP01	30-Mar-21	Eurofins MGT	784189	< 127	<0.02	Pass
SVP02	30-Mar-21	Eurofins MGT	784189	220	0.02	Pass
SVP03	30-Mar-21	Eurofins MGT	784189	< 119	<0.02	Pass
SVP04	30-Mar-21	Eurofins MGT	784189	< 123	<0.02	Pass
SVP05	30-Mar-21	Eurofins MGT	784189	190	0.02	Pass
DUP01	30-Mar-21	Eurofins MGT	784189	<123	<0.02	Pass
DUP02	30-Mar-21	Envirolab	265789	280	0.03	Pass

SOIL VAPOUR SUMMA CANISTER SAMPLE PRESSURE SUMMARY

Project Number: 60610

|--|

Sample ID	Sampling Date	Laboratory	Lab Report								
SVP01	30-Mar-21	Eurofins MGT	784189	-30.0	-30.0	-7.0	-7.2	0.0	0.0	0.0	Pass
SVP02	30-Mar-21	Eurofins MGT	784189	-30.0	-30.0	-10.0	-9.4	0.0	0.6	0.6	Pass
SVP03	30-Mar-21	Eurofins MGT	784189	-30.0	-30.0	-5.0	-5.7	0.0	0.0	0.0	Pass
SVP04	30-Mar-21	Eurofins MGT	784189	-30.0	-30.0	-7.0	-6.4	0.0	0.6	0.6	Pass
SVP05	30-Mar-21	Eurofins MGT	784189	-30.0	-30.0	-4.0	-2.9	0.0	1.1	1.1	Pass
DUP01	30-Mar-21	Eurofins MGT	784189	-30.0	-30.0	-6.0	-6.4	0.0	0.0	0.0	Pass
DUP02	30-Mar-21	Envirolab	265789	-30.0	-30.0	-7.0	-8.0	0.0	0.0	0.0	Pass
SHROUD01	30-Mar-21	Eurofins MGT	784189	-30.0	-30.0	-5.0	-3.4	0.0	1.6	1.6	Pass

SOIL VAPOUR RPD VALUE SUMMARY

Lab Report Number	784189	Intra-Lab Dup		784189	Inter-Lab Dup	
Field ID	SVP02	DUP01	RPD	SVP03	DUP02	RPD
Sample Date	30-Mar-21	30-Mar-21		30-Mar-21	30-Mar-21	

Chem_Group	ChemName	Units	EQL						
Chlorinated Alkenes	1,1-dichloroethene	μg/m3	2	330	400	19	25	22	13
	cis-1,2-dichloroethene	μg/m3	2	<6	<5	0	<5	<10	0
	Tetrachloroethene	μg/m3	3.4	29	36	22	39	30	26
	trans-1,2-dichloroethene	μg/m3	2	<6	<5	0	<5	<10	0
	Trichloroethene	μg/m3	2.7 : 1.6 (Interlab)	4800	5800	19	8100	7200	12
	Vinyl Chloride	μg/m3	1.3 : 0.8 (Interlab)	<4	<3	0	<3	<4	0
Organic Alcohols	2-Propanol	μg/m3	49 : 12 (Interlab)	220	<123	57	<119	280	81

^{*}High RPDs are in bold (an acceptable RPD range of 0 % to 30 % has been adopted in accordance with the ASC NEPM [NEPC 2013]).

^{**}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory.

GROUNDWATER RPD VALUE SUMMARY

Lab Report Number	784255	Intra-Lab Dup		25139	Inter-Lab Dup	
Field ID	GW3034B	DUP01	RPD	GW3034B	SPLIT01	RPD
Sample Date	30-Mar-21	30-Mar-21		30-Mar-21	30-Mar-21	

Chem_Group	ChemName	Units	EQL						
Chlorinated Alkenes	1,1-dichloroethene	μg/l	1	110	130	17	110	93	17
	cis-1,2-dichloroethene	μg/l	1	<25	<25	0	<25	<50	0
	Tetrachloroethene	μg/l	1	<25	<25	0	<25	<50	0
	trans-1,2-dichloroethene	μg/l	1	<25	<25	0	<25	<50	0
	Trichloroethene	μg/l	1	1200	1400	15	1200	1200	0
	Vinyl Chloride	μg/l	1:10 (Interlab)	<25	<25	0	<25	<500	0

^{*}High RPDs are in bold (an acceptable RPD range of 0 % to 30 % has been adopted in accordance with the ASC NEPM [NEPC 2013]).

^{**}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory.

TRIP BLANK RESULTS SUMMARY

Lab Report Number	784255
Field ID	TB01
Sample Date	30-Mar-21
Sample Type	Trip Blank

Chem_Group	ChemName	Units	EQL	
Chlorinated Alkenes	1,1-dichloroethene	μg/L	1	<1
	cis-1,2-dichloroethene	μg/L	1	<1
	Tetrachloroethene	μg/L	1	<1
	trans-1,2-dichloroethene	μg/L	1	<1
	Trichloroethene	μg/L	1	<1
	Vinyl Chloride	μg/L	1	<1

TRIP SPIKE RESULTS SUMMARY

Lab Report Number	784255
Field ID	WSP7893
Sample Date	30-Mar-21
Sample Type	Trip Spike

Chem_Group	ChemName	Units	EQL	
BTEXN	Benzene	%	1	94
	Toluene	%	1	87
	Ethylbenzene	%	1	74
	Xylene (o)	%	1	70
	Xylene (m & p)	%	1	79
	Xylene Total	%	1	73
	Napthanlene	%	1	80
TRH	TRH C6-C10	%	1	73
	TRH C6-C9	%	1	74

Appendix A Soil Vapour Probe Soil Logs and Construction Details and Geotechnical Bore Soil Log

PROJECT NUMBER 60610

PROJECT NAME Melrose Park SVME & VIRA

CLIENT SA EPA

ADDRESS Melrose Park, SA

DRILLING COMPANY JBS&G
DRILLING DATE 26-Mar-21
DRILL RIG Hand Auger

DRILLING METHOD Hand Auger

DIAMETER 75 mm

EASTING 278,877 **NORTHING** 6,125,408

COORD SYS GDA94_MGA_zone_54
COORD SOURCE Map Approximation

LOGGED BY HF

 COMPLETION Gatic
 CASING Teflon Tubing - 6mm
 SCREEN INTERVAL 0.85 - 1.05 m bgl

Drilling Method	Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	PID	Additional Observations
НА		0.1		Fill	Fill - Sandy GRAVEL, grey-brown, fine to coarse, fine to coarse grained sand, with some silt fines	Dry		Gravel Cover
		0.2		CL-SC	Silty Sandy CLAY, brown, low plasticity, fine grained sand, with silt fines	Moist, dry of plastic limit	0	Very hard layer
		0.4		CL-SC	Silty Sandy CLAY, red-brown, medium plasticity, fine grained sand	Moist, dry of plastic limit	0	
		0.6						
		0.8		СН-МН	Silty CLAY, brown with pale brown mottling, medium to high plasticity, with some fine	Moist, dry of plastic limit		
		0.9 - 1 - 1.1			grained sand			
		1.2					0	
		1.3			Termination Depth at:1.200 m.			
		1.4						

PROJECT NUMBER 60610

PROJECT NAME Melrose Park SVME & VIRA

CLIENT SA EPA

ADDRESS Melrose Park, SA

DRILLING COMPANY JBS&G
DRILLING DATE 26-Mar-21
DRILL RIG Hand Auger

DRILLING METHOD Hand Auger **DIAMETER** 75 mm

EASTING 278,758 **NORTHING** 6,125,404

COORD SYS GDA94_MGA_zone_54
COORD SOURCE Map Approximation

LOGGED BY HF

COMPLETION Gatic **CASING** Teflon Tubing - 6mm **SCREEN INTERVAL** 0.85 - 1.05 m bgl

Drilling Method	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	PID	Additional Observations
HA I			Fill	Fill - Sandy GRAVEL, grey, fine to coarse, fine to coarse grained sand	Dry	_	Gravel Cover
	0.1		Fill	Fill - Silty Gravelly SAND, cream-brown, fine to coarse grained sand, fine to coarse gravel, low plasticity silt	Dry		Road base layer
	0.3		CL-SC	Silty Sandy CLAY, brown, low plasticity, with fine grained sand	Moist, dry of plastic limit		
	0.4		CL-SC	Silty Sandy CLAY, red-brown, medium plasticity, fine grained sand	Moist, dry of plastic limit	0	
	0.6		CL-ML-SM	Sandy Silty CLAY, brown with cream mottling, medium plasticity, fine grained sand	Moist, dry of plastic limit	0	
	- 0.9		СН-МН	Silty CLAY, brown, medium to high plasticity	Moist, dry of plastic limit	0	
	1.2			Termination Depth at:1.200 m.			
	1.4						

PROJECT NUMBER 60610

PROJECT NAME Melrose Park SVME & VIRA

CLIENT SA EPA

ADDRESS Melrose Park, SA

DRILLING COMPANY JBS&G
DRILLING DATE 26-Mar-21
DRILL RIG Hand Auger

DIAMETER 75 mm

DRILL RIG Hand Auger
DRILLING METHOD Hand Auger

COORD SYS GDA94_MGA_zone_54
COORD SOURCE Map Approximation
LOGGED BY HF

EASTING 278,744

NORTHING 6,125,422

COMPLETION GaticCASING Teflon Tubing - 6mmSCREEN INTERVAL 0.85 - 1.05 m bgl

Method	ails	n bgl)	Log	Lithological Class	Lithological Description	Moisture		Additional
Drilling Method	-Well Details	Depth (m bgl)	Graphic Log	Litholog	_ initiagital 2000 pilot	oistare	읍	Observations
НА				Asphalt	Fill - Asphalt	Dry		
		- - - 0.1	XX	Fill	Fill - Sandy GRAVEL, cream-brown, fine to coarse gravel and sand	Dry		Road base layer
		U. I		Fill	Fill - Silty Sandy CLAY, brown, low plasticity, with fine grained sand	Moist, dry of plastic limit	0	
		0.2						
		0.3						
		0.4	\bowtie					
				CL-ML-SM	Sandy Silty CLAY, red-brown, medium plasticity, fine grained sand	Moist, dry of plastic limit	0	
	22 22	0.5		CL-ML-SM	Sandy Silty CLAY, brown with cream mottling, medium plasticity, fine grained sand	Moist, dry of plastic limit	0	
		0.6						
		0.7						
		0.8						
		- 0.9 - -		CH-MH	Silty CLAY, pale brown, medium to high plasticity	Moist, dry of plastic limit		
		1 						
		 1.1					0	
							0	
		1.2 -	<i>//////</i>		Termination Depth at:1.200 m.			
		- - - 1.3						
		- - - - 1.4						

PROJECT NUMBER 60610

PROJECT NAME Melrose Park SVME & VIRA

CLIENT SA EPA

ADDRESS Melrose Park, SA

DRILLING COMPANY JBS&G DRILLING DATE 26-Mar-21 **DRILL RIG** Hand Auger

DRILLING METHOD Hand Auger

DIAMETER 75 mm

EASTING 278,705 **NORTHING** 6,125,436

COORD SYS GDA94_MGA_zone_54 **COORD SOURCE** Map Approximation

LOGGED BY HF

COMPLETION Gatic **CASING** Teflon Tubing - 6mm SCREEN INTERVAL 0.85 - 1.05 m bgl

Drilling Method	-Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	PID	Additional Observations
НА		0.1		Fill	Fill - Sandy Silty GRAVEL, grey, fine to coarse gravel and sand, low plasticity fines	Dry		Gravel Cover
		0.3		Fill	Fill - Silty Sandy CLAY, brown, low plasticity, fine grained sand, with some fine to medium gravels	Moist, dry of plastic limit	0	
	22 2X2	0.5		CL-ML-SM	Sandy Silty CLAY, red-brown, medium plasticity, fine grained sand	Moist, dry of plastic limit	0	Roots present
		0.6 0.7 0.8 0.9		CL-ML-SM	Sandy Silty CLAY, brown with cream mottling, medium plasticity, fine grained sand	Moist, dry of plastic limit	0	
		1.2			Termination Depth at:1.200 m.			
		1.3			- 12			
		1.4						

PROJECT NUMBER 60610

PROJECT NAME Melrose Park SVME & VIRA

CLIENT SA EPA

ADDRESS Melrose Park, SA

DRILLING COMPANY JBS&G
DRILLING DATE 26-Mar-21
DRILL RIG Hand Auger

DRILLING METHOD Hand Auger

DIAMETER 75 mm

EASTING 278,782 **NORTHING** 6,125,444

COORD SYS GDA94_MGA_zone_54
COORD SOURCE Map Approximation

LOGGED BY HF

 COMPLETION Gatic
 CASING Teflon Tubing - 6mm
 SCREEN INTERVAL 0.85 - 1.05 m bgl

Drilling Method	-Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	PID	Additional Observations
НА				Asphalt	Fill - Asphalt	Dry		
		0.1		Fill	Fill - Sandy GRAVEL, cream, fine to coarse gravel and sand, with silt fines	Dry		
		0.2		Fill	Fill - Silty Sandy CLAY, brown, low plasticity	Moist, dry of plastic limit		Roots present
		0.4		CL-SC	Silty Sandy CLAY, red-brown, medium	Moist, dry of plastic limit	0	
		0.5			plasticity, fine grained sand			
		0.6		CL-SC	Silty Sandy CLAY, brown, medium plasticity, fine to medium grained sand	Moist, dry of plastic limit	0	
		0.8		CH-MH	Silty CLAY, brown with cream mottling,	Moist, dry of plastic limit		
					medium to high plasticity, with some fine grained sand			
		- '.' - - - 12					0	
		- 1.2 - - - - 1.3			Termination Depth at:1.200 m.			
		- 1.3 - - - - 1.4						
		- - -						

SOIL BOREHOLE GB01

PROJECT NUMBER 60610
PROJECT NAME Melrose Park SVME & VIRA
CLIENT SA EPA
ADDRESS Melrose Park, SA

DRILLING COMPANY InDepth Drilling
DRILLING DATE 26-Mar-21
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
DIAMETER 50 mm

EASTING 278,758.43

NORTHING 6,125,402.63

COORD SYS GDA94_MGA_zone_54

COORD SOURCE Map Approximation

LOGGED BY HF

COMMENTS Soils encountered as SVP02 (approximately 2 m north of GB01) are displayed as the full soil core collected at GB01 was retained in the geoprobe plastic sleeve (sealed with end caps) and provided to the laboratory for geotechnical testing.

Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	PID	Additional Observations
PT				Fill	Fill - Sandy GRAVEL, grey, fine to coarse, fine to coarse grained sand	Dry		Gravel Cover
		0.1		Fill	Fill - Silty Gravelly SAND, cream-brown, fine to coarse grained sand, fine to coarse gravel, low plasticity silt	Dry		Road base layer
		0.3		CL-SC	Silty Sandy CLAY, brown, low plasticity, with fine grained sand	Moist, dry of plastic limit		
		0.4		CL-SC	Silty Sandy CLAY, red-brown, medium plasticity, fine grained sand		0	
		0.6		CL-ML-SM	Condu Cilly CLAV brown with an ore mostling	Maint day of ploatic limit	0	
		0.7		CL-IVIL-SIVI	Sandy Silty CLAY, brown with cream mottling, medium plasticity, fine grained sand	Moist, dry of plastic limit		
				СН-МН	Silty CLAY, brown, medium to high plasticity	Moist, dry of plastic limit	0	
		— 1.3 — 1.4			Termination Depth at: 1.2 m.			

Appendix B Photographs

Appendix C Calibration Certificates

Instrument

YSI Quatro Pro Plus

Serial No.

18L102027

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Charge Condition	1	- Commonto
	Fuses	✓	
	Capacity	✓	
Switch/keypad	Operation	✓	
Display	Intensity	✓	
	Operation (segments)	1	
Grill Filter	Condition	✓	
	Seal	✓	
PCB	Condition	✓	
Connectors	Condition	✓	
Sensor	1. pH	1	
	2. mV	✓	The state of the s
	3. EC	✓	
	4. D.O	✓	
	5. Temp	✓	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
1. pH 7.00		pH 7.00		330737	pH 7.02
2. pH 4.00		pH 4.00		330734	pH 4.00
3. mV		237.6mV		333083/329762	229.2 mV
4. EC		2760uS		329027	2760uS
6. D.O		0%		123302	0%
7. Temp		21.1°C		Multimeter	22.0 C

Calibrated by:

Andrew Boyd

Calibration date:

26-Mar-21

Next calibration due:

26-Sep-21

Instrument Serial No.

GA5000

G505863

Sensors

CH4, CO2, O2, CO, H2S

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Charge Condition	1	
	Fuses	✓	
	Capacity	✓	
	Recharge OK?	1	
Switch/keypad	Operation	✓	
Display	Intensity	1	
	Operation (segments)	✓	
Grill Filter	Condition	✓	
	Seal	✓	
Pump	Operation	1	
	Filter	1	
	Flow	1	
	Valves, Diaphragm	1	
PCB	Condition	1	
Connectors	Condition	✓	
Sensor	O2	✓	
	CH4	✓	
	CO2	✓	
	CO	✓	
	H2S	1	
Alarms	Beeper	✓	
	Settings	✓	
Software	Version		
Datalogger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Diffusion mode	Aspirated mode				
Sensor	Serial no	Calibration gas and concentration	Certified	Gas bottle No	Instrument Reading
O2		20.9% Vol O2		Fresh Air	20.9% O2
CH4		60% CH4	NIST	BC327756	60.1% CH4
CO2		40% CO2	NIST	BC327756	40% CO2
CO		100ppm CO	NIST	BC332280	100ppm CO
H2S		25ppm H2S	NIST	BC332280	25ppm H2S
		1 0 1			

Calibrated by:

Andrew Boyd

Calibration date:

26/03/2021

Next calibration due:

22/09/2021

CALIBRATION RECORD

Project Number

Site/Client

	WQM	T504541	17B100728	17C102196	Hire
Equipment ID	PID	Tiger T-109753	MiniRae 2000 110-011979	Hire	
Calibration standard	Pre-calibration value	Calibrated value	Calibration standard	Pre-calibration value	Calibrated value
Compare	against mercury thermo	ometer			
100% saturation			Zero (0%)		
pH 7.00			pH 4.00		
2.76 mS/cm			12.88 mS/cm		
229mV Zobell's sol ⁿ			Temp for Zobell value		
YSI >50%)	on cotton tip		Spare batteries in YSI c	ase (2x "C" size)	
Calibration standard	Pre-calibration value	Calibrated value	Calibration standard	Pre-calibration value	Calibrated value
Zero in air	0	0	100ppm Isobutylene	2350	100
Zero in air	0	0		238836/	ICB3025
	Compare 100% saturation pH 7.00 2.76 mS/cm 229mV Zobell's sol ⁿ th dishwashing detergent (YSI >50%)	Compare against mercury thermoderal 100% saturation pH 7.00 2.76 mS/cm 229mV Zobell's sol ⁿ th dishwashing detergent on cotton tip YSI >50%)	Calibration standard Pre-calibration value Calibrated value Compare against mercury thermometer 100% saturation pH 7.00 2.76 mS/cm 229mV Zobell's sol ⁿ th dishwashing detergent on cotton tip YSI >50%)	Calibration standard Pre-calibration value Calibrated value Calibration standard Compare against mercury thermometer 100% saturation Zero (0%) pH 7.00 pH 4.00 2.76 mS/cm 229mV Zobell's sol ⁿ Temp for Zobell value th dishwashing detergent on cotton tip YSI >50%) Spare batteries in YSI co	Calibration standard Pre-calibration value Calibrated value Calibration standard Pre-calibration value Compare against mercury thermometer 100% saturation Zero (0%) pH 7.00 pH 4.00 2.76 mS/cm 229mV Zobell's sol ⁿ Temp for Zobell value th dishwashing detergent on cotton tip YSI >50%) Spare batteries in YSI case (2x "C" size)

CALIBRATION RECORD

Project Number	60610	Site/Client	MERROSE	PARK	
Equipment ID	WQM	TPS 90FLT T504541	YSI-1 17B100728	YSI-2 17C102196	Hire .
Equipment ID	PID	Tiger T-109753	MiniRae 2000 110-011979	Hire	

Water Quality Meter

	Calibration standard	Pre-calibration value	Calibrated value	Calibration standard	Pre-calibration value	Calibrated value	
Temperature (°C)	Compare	against mercury thermo	ometer				
Dissolved Oxygen (%)	100% saturation			Zero (0%)			
рН	pH 7.00			pH 4.00			
Conductivity (EC - mS/cm)	2.76 mS/cm			12.88 mS/cm			
Redox (ORP - mV)	229mV Zobell's sol ⁿ			Temp for Zobell value			
Electrodes cleaped gently with Battery check (TPS min 7.2V, Y		on cotton tip		Spare batteries in YSI ca	ase (2x "C" size)		

Photoionisation Detector

	Calibration standard	Pre-calibration value	Calibrated value	Calibration standard	Pre-calibration value	Calibrated value
	Zero in air	0.0	0.0	100ppm Isobutylene	120.0	101.2
				Lot/Cyl number:	238836/	BE83023
Sattery check				Expiry:	5/2023	
Action required	NÁ					
1						

CHECKED BY: 11-1-20-14-1

DATE: 25 03 2021

SIGNED

	Zobell Solution Value,
Temperature, C	mV vs. Ag/AgCl (4 M KCl)
-5	267.0
0	260.5
5	254.0
10	247.5
15	241.0
20	234.5
25	228.0
30	221.5
35	215.0
40	208.5
45	202.0
50	195.5

^{*} Calibration solution traceability information is available upon request.

Appendix D Waste Disposal Documentation

EPA WasteTracker 000

TRANSPORT CERTIFICATE - No. 5T00501136

Created by: Kelly Bras CA start date: 20-Apr-2021 Status: Created 5C00036291 CA no: CA end date: 19-Apr-2022

South Australia	CA no:	5C00036291	Status: Created	CA end date: 19-Apr-2022
PART 1 (this par	t to be complet	ted by consignor at p	pickup)	
CONSIGNOR				
VARIOUS - PR	ODUCER			Contact: ENVIRONMENT PROTECTION A
VARIOUS LOC	ATIONS SA		Role: Producer	Phone: (08) 8204 2000
VARIOUS, SA	5000		ABN/ACN:	Fax: N/A
			ANZSIC #: 2919	Emergency: (08) 8204 2000
			Licence #: N/A	Email: N/A
Pickup details:	As above		Licence w. 1471	Cinali. 1975
r ickup details.	710 00010			
WASTE			of additional wastes transported	
Waste code:		The second secon	drocarbons/water mixtures or er	nulsions (, oH &I <i \<="" td=""></i>
Description:	Oil/hyc	drocarbon mixed wit		(CIAT 31 31
Form:	Liquid		Proposed treatment: Cher	mical/Physical treatment
Contaminants:	N/A			
77				
This seeking is			4 Cafalata - DA 4200 205 255	
I Compared to the property of the con-	and the control of the state of		t SafeWork SA 1300 365 255 w	
Dangerous g		2 x Bag 5	Subsidiary risk class:	UN no.:
Packaging ty	pe:	1×52	Packing group no:	No. package:
Vaste amount a	at pickup:	Llooka	- (Required)	(8)
Waste amount		-10023	Processing tre	eatment Cher Phyl
vvaste amount	at airivai.		Troccasing are	saunone
PICKUP				
I declare that to	the hest of my	knowledge and heli	ef the above information is true	and correct
Name and Posi	tion (block lette	rel LAVRA	ef the above information is true	
Signature	1/1///	/ /	Date	23/4/2021
	11//	/		man in the Control of
			d by the transporter at pickup)	
		R OF OWN WASTE	Fields over the software transport	
540 CHURCHIL			Licence #: n/a	Contact: ENVIRONMENT PROTECTION
VARIOUS, SA	5000		Vehicle reg:	Phone: (08) 8204 2000
			Transport type: Road	Fax: N/A
A 2			Transit State: SA	Email: N/A
I declare that to	the best of my	knowledge and bel	ief the above information is true	and correct.
Name and Posi	tion (block lette	ers) LAVKA	JUHIOSIUUI JIBSTA	
Signature			Da	ite 2314 2021
PART 3 - RECEI	VING FACILIT	Y (this part to be con	mpleted by the receiving facility)	
VEOLIA - 2897		, (and Paris and	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Contact: KELLY BRAS
540 CHURCHIL			Licence #: 2897	Phone: (08) 8343 9608
BURN, SA 5			Facility ref #: N/A	Fax:
50,111,011			racinty fer in. 147A	
				Email: kelly.bras@veolia.com
	2/11/21			
Arrival date:	3/4/51	Waste amou	nt at arrival: N/A 2 Look	Did paper TC accompany load? The J
ACCEPT / REJI	ECT THE WAS			
The seesing	ect the was	atad the wests. De	te accepted: 23/4/2(Date	Processed: 23/4/2/
The receiving	ing facility acce	pted the waste - Da	te accepted	Processed:
A literature of the second sec		ted the waste (comp		
The second secon	The state of the second		,	
and the state of t		Name:		
The state of the s			······································	······γ··γ····························
I declare that to	the best of my	knowledge and bel	ief the above information is true	and correct - complete if accepted or rejected:
	tion (block lette	ers)		5311/31
Signature			Date	471717
NOTE (including	g any discrepa	ncies)		
JBS&G				
	ation in Parts 1 and	2 is not correct and it is	not practical at the time to change the in	nformation in WasteTracker and print a new

version of the certificate, the consignor or transporter must write and initial any corrections on the certificate. The receiving facility must ensure these

corrections are entered into WasteTracker as soon as practicable afterwards.

Printed on: 20-Apr-2021 3:09 pm

Appendix E Soil Vapour Field Sampling Sheets

Soil Vapour Probe ID

SVP
Soil Vapour Bore

Date:	30 / 03 / 3	2021		Address:	115	Street						
Client:	EPA SA			Time onsite:	7:15	Time offsite:	12:3	Opn				
Project Name:	roject Name: Melrose Park					Temperature and Weather: 16°C Sunny						
Project No:	60610			Field Staff:	AS			/				
		1-	a - Calculate I	Maximum Sa	mpling volum	ne (ml.)						
Borehole inner diameter						ile (ilie)			0.4			
(cm)	7.5	Length of sand		50	Sand Porosity				0.4			
Maximum sampling volu	ıme (mL) = ∏ x (san	d pack radius) ²	x (Lengh of san	d pack) x Poro	sity	Indicative M	aximum Sampling	y Volume(mL)=	883.125			
		1	b - Calculate	Maximum Sa	ampling Time	(mins)						
Regulator Flow Rate	80	Maximum San	npling Volume	883.125		Maxim	um Sampling Tin	ne (minutes) =	11.0			
(mL/min)	00	(mL)		003.123		Wilder	am sampanig ini	ic (illinates)				
2 -Canister pressure	VG-02 (valve C	open) (in. Hg)	= include in sec	tion 6.0								
		4.0 - Calcula	te Soil Vapou	r Probe Dead	dspace Volun	ne (Purge Vol	ume)					
Tubing volume (mL) = ∏	r2 (tubing radius) x	tubing length	(cm)		Total deadspace	e volume (mL)	= implant vol + tu	ibing vol #1+#2+	#3			
Tubing #1 inner diamete	er (cm) 0.475	Length of tubi	ing # 1 (cm) 14	10	Tubing #1 volu	me (mL) = 24	1.78					
Tubing #2 inner diamete	er (cm) 0.475	Length of tubi	ing # 2 (cm) 20)	Tubing #2 volu	me (mL) =	3.5					
Tubing #3 inner diamete			ing # 3 (cm) 20		Tubing #3 volu	me (mL) =	3.5					
Implant Volume (mL) =						e volume (mL)	47.78					
*1/4 inch tubing from SGS has II		from Thermo has I	D of 0.475cm; 1/4 inc	th tubing ∏r2 (tubin	Name of the Party							
			5.1 - Shut-in					0				
Start (kPa)	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	End (kPa) After 30 s			otes	16.93 kPa	100 in.H ₂ O	30 in.Hg			
-/1	5		-10				5 in.Hg	24.9 kPa	101.59kPa			
				5.2 - Vacuur	n test							
Syringe volume during v	acuum test (mL) =	(A)	Vaccum gener	ated during te	st (Y/N)	VG-01 maximu	ım (kPa) = 0	Water observed	1 (N/N) Ł			
Time (se	ecs)=	2	3	4	5							
Pressure (k	(PA)=	0	0	0	0							
				2 11 17 1	- I. Took	+ -						
			5.	3 - Helium Le				•				
He Detector Model:	GASCHECK	-			Flow Rate of H	Els tologue for			mL/min			
Background (ambient) o	check: 5	×10-	ppm				He supply flowr		10			
Background (soil bore)	check:	y 102	ppm				e background ch	eck (mL) =	2 (B)			
Helium concentration in		(x10)	ppm			or purge Volum		10	(c)			
Time Start Purging with	He detector (leak t	est): 8:59	Time Stop Pur	ging with He d	etector (leak te	st): 9.04	Purge time (mir	1):				
Minutes after st	art purging =	1min	2min	3min	4min	5min		ak test passed (Y/N)			
He conc sa	ampling train (ppm)	0 y 102	0x102	OX102	OX10	O X10	2	Y				
1												
		70		Purge volu		tot tot			101 (01			
Volume purged during	vacuum test (mL) =	S (A)	Volume purge	d during He te	st (mL) = \ \ \ \	(B) + (C)	Total Purge (ml	.) = 3 0 (7	A) + (B) + (C)			
	-		5.4	Isopropano	l Leak Test							
Isopropanol volume ap	plied (mL): 2/	0	PID Average in	shroud (ppm)	26.	8	PID Peak in shr	oud (ppm): 🭕	-(
				10								
			6.0 - S	umma Canis	ter Sampling							
Summa Canister ID:	16010	4	Flow controlle	er ID: 000	197)	Flow controller	rate (mL/min):	80			
Duplicate Sample ID:			Flow controlle	107	13		Flow controller	rate (mL/min):	0 -			
		Pressure pri	or to sampling	Times sto	rt Sampling	Pressure er	nd of sampling		p Sampling			
			of Hg):		rt Sampling	(inch	of Hg):	Time sto	h annhung			
Caniste	er (Primary Sample)	怪	-30	4:0	0 5 am	- 7	-	9:150	un			
	(Duplicate Sample)								•			
VG-01 pressure (P) che	cks Time: 9.08	P (kPa): 🔘	Time: 9:10	P (kPa):	Time: 9:1	LP (kPa): O	Time:	P (kPa):				
1			(.f-g - Genera	al Gases							
Time (n	min) CH ₄ (%)	CO ₂ (%)	O ₂ (%)	BAL (%)	H2S (ppm)	CO (ppm)	Baro Pressure	VG-01 (kPa)	PID (ppm			
Soil Ga's - Post 2 m	in 6.0	4.6	17.0	78.5	0	0		0	Ø .			
Ambient Air 2m	in 0.0	0.0	21.1	78.8	0	1	1022		0. 70			
	1.0								-			
Notes:							4					

Soil Vapour Probe ID SVP 0 2
stallation type Soil Vapour Bore

Date:	30 / 03 /	2021		Address:	Rose	3570	12 12					
Client:	EPA SA			Time onsite:	1.15 am	Time offsite:	12:30 Su	pm				
Project Name:	Melrose Par	K		Temperature a	nd Weather:	1800	Su	ny				
Project No:	60610			Field Staff: AS								
		1a	- Calculate I	Maximum Sai	mpling volun	ne (mL)						
Borehole inner diameter	7.5	Length of sand	pack (cm)	50	Sand Porosity	1		7	(
(cm) Maximum sampling volu						Indicative Ma	aximum Samplin	a Volume(mL)=	88:			
iviaximum sampling voic	ume (mt.) = x (sar							g				
		11	o - Calculate	Maximum Sa	mpling Time	(mins)						
Regulator Flow Rate (mL/min)	80	Maximum Sam (mL)	npling Volume	883.125		Maxim	um Sampling Ti	me (minutes) =	1			
2 -Canister pressure	VG-02 (valve C	open) (in. Hg) =	include in sec	tion 6.0								
		4.0 - Calculat	e Soil Vapou	r Probe Dead	space Volun	ne (Purge Vol	ume)					
Tubing volume (mL) = ∏	[r2 (tubing radius) x	tubing length ((cm)		Total deadspac	e volume (mL) =	implant vol + t	ubing vol #1+#2	+#3			
Tubing #1 inner diamete	er (cm) 0.475	Length of tubi	ng # 1 (cm) 14	10	Tubing #1 volu	me (mL) = 24	.78					
Tubing #2 inner diamete	er (cm) 0.475	Length of tubi	ng # 2 (cm) 20)	Tubing #2 volu	me (mL) =	3.5					
Tubing #3 inner diamete	er (cm) 0.475	Length of tubi	ng # 3 (cm) 20)	Tubing #3 volu	me (mL) =	3.5					
Implant Volume (mL) =	16				Total deadspac	e volume (mL) =	47.78					
*1/4 inch tubing from SGS has I	D of 0.3175cm, 1/4 tubing	g from Thermo has II	of 0.475cm; 1/4 in	ch tubing ∏r2 (tubin	g radius) is 0.079cm	2 for SGS and 0.177c	m2 for Thermo					
			5.1 - Shut-in	test Record vacuu	m in VG-01 over 30	sec (kPa)						
Start (kPa)	. E	nd (kPa) After 30	ec	No	tes	16.93 kPa	100 in.H ₂ O	30			
- 10			-10				5 in.Hg	24.9 kPa	101			
	· ·	-		5.2 - Vacuum	test							
Syringe volume during v	vacuum tost (ml) -	20(1)	Vaccum gener	ated during tes		VG-01 maximu	m (kPa) =	Water observe	d (Y/N)			
Syringe volume during v	vacuum test (me) -		3	4		VO-02 maxima		Tracer observe	(.,,			
		2		Conf.	-							
Time (s			- 10-11		5							
Pressure () He Detector Model:	0	0	0	3 - Helium Le	0	e Detector:		2	mL/mir			
Pressure (i	GASCHECK	0×02	5.	3 - Helium Le	eak Test Flow Rate of H		He supply flow		mL/min			
Pressure () He Detector Model:	GASCHECK	0×02	5.	3 - Helium Le	eak Test Flow Rate of H	um in: 10:12	He supply flow	rate (L/min) =				
Pressure () He Detector Model: Background (ambient) (GASCHECK	0×02	5.	3 - Helium Le	eak Test Flow Rate of H Time start heli Voume purgeo	um in: 10:12	e background ch	rate (L/min) = neck (mL) =	10			
He Detector Model: Background (ambient) of Background (soil bore) Helium concentration in	GASCHECK check: check: n shroud:	0×02 0×102 9×105	5. ppm ppm	3 - Helium Le	rak Test Flow Rate of H Time start heli Voume purgec Helium detect	um in: 0'. & during soil bord	e background ch	rrate (L/min) = neck (mL) =	10			
He Detector Model: Background (ambient) of Background (soil bore)	GASCHECK check: check: n shroud:	0×02 0×102 9×105	5. ppm ppm	3 - Helium Le	rak Test Flow Rate of H Time start heli Voume purgec Helium detect	um in: 0'. & during soil bord	e background che e (mL) = Purge time (mi	rrate (L/min) = neck (mL) =	10 2			
He Detector Model: Background (ambient) of Background (soil bore) Helium concentration in Time Start Purging with Minutes after st	GASCHECK check: check: n shroud:	O x W ² - O x 10 ² O x 10 ² O x 10 ³ (est): 10:11	ppm ppm ppm Time Stop Pur 2min	3 - Helium Le	rak Test Flow Rate of H Time start heli Voume purgec Helium detect etector (leak te	during soil bord or purge Volume st): /0:17	e background che e (mL) = Purge time (mi	rrate (L/min) = neck (mL) = l in): 6	10 2 0			
He Detector Model: Background (ambient) of Background (soil bore) Helium concentration in Time Start Purging with Minutes after st	GASCHECK check: check: n shroud: n He detector (leak t	O × W ² O × 10 ² O × 10 ² O × 10 ² O × 10 ² Imin	ppm ppm ppm Time Stop Pur 2min	3 - Helium Le	rak Test Flow Rate of H Time start heli Voume purgec Helium detect etector (leak te	during soil bore or purge Volume st): /0:17	e background che e (mL) = Purge time (mi	rrate (L/min) = neck (mL) = l in): 6	10 2 0			
He Detector Model: Background (ambient) of Background (soil bore). Helium concentration in Time Start Purging with Minutes after st He conc so	GASCHECK check: check: n shroud: n He detector (leak that purging = ampling train (ppm)	O × 10 ²	ppm ppm ppm Time Stop Pur 2min	3 - Helium Le	rak Test Flow Rate of H Time start heli Voume purgec Helium detect etector (leak te 4min 2 × 10 mes	during soil boror purge Volumest): /0:17 Smin	e background che e (mL) = Purge time (mi	rate (L/min) = leck (mL) = l in): beak test passed	10 2 0			
He Detector Model: Background (ambient) of Background (soil bore) Helium concentration in Time Start Purging with Minutes after st	GASCHECK check: check: n shroud: n He detector (leak that purging = ampling train (ppm)	O × 10 ²	ppm ppm ppm Time Stop Pur 2min	3 - Helium Le	rak Test Flow Rate of H Time start heli Voume purgec Helium detect etector (leak te 4min 2 × 10 mes	during soil boror purge Volumest): /0:17 Smin	e background che e (mL) = Purge time (mi	rate (L/min) = leck (mL) = l in): beak test passed	10 2 0 (Y/N)			
He Detector Model: Background (ambient) of Background (soil bore). Helium concentration in Time Start Purging with Minutes after st He conc so	GASCHECK check: check: n shroud: n He detector (leak that purging = ampling train (ppm)	O × 10 ²	ppm ppm ppm Time Stop Pur 2min	3 - Helium Le	rak Test Flow Rate of H Time start heli Voume purgec Helium detect etector (leak te 4min	during soil boror purge Volumest): /0:17 Smin	e background che e (mL) = Purge time (mi	rate (L/min) = leck (mL) = l in): beak test passed	10 2 0			
He Detector Model: Background (ambient) of Background (soil bore). Helium concentration in Time Start Purging with Minutes after st He conc so	GASCHECK check: check: n shroud: n He detector (leak to tart purging = ampling train (ppm)	O × 10 ²	ppm ppm ppm Time Stop Pur 2min Volume purge	3 - Helium Le	rak Test Flow Rate of H Time start heli Voume purgec Helium detect stector (leak te 4min	during soil boror purge Volumest): /0:17 Smin	e background che e (mL) = Purge time (mi	rate (L/min) = neck (mL) = l nin): eak test passed	10 2 0 (Y/N)			
Pressure (i He Detector Model: Background (ambient) of Background (soil bore) Helium concentration in Time Start Purging with Minutes after st He conc so Volume purged during	GASCHECK check: check: n shroud: n He detector (leak to tart purging = ampling train (ppm)	0 x 10 ² 0 x 10 ² 9 x 10 ³ 9 x 10 ³ 1 min 0 x 10 ²	ppm ppm ppm Time Stop Pur 2min Volume purge	3 - Helium Le ging with He de 3min 2 / 0 2 Purge volu ed during He tes	rak Test Flow Rate of H Time start heli Voume purgec Helium detect stector (leak te 4min	during soil boror purge Volumest): /0:17 Smin	e background che (mL) = Purge time (mi	rate (L/min) = neck (mL) = l nin): eak test passed	10 2 0 (Y/N)			
Pressure (i He Detector Model: Background (ambient) of Background (soil bore) Helium concentration in Time Start Purging with Minutes after st He conc so Volume purged during	GASCHECK check: check: n shroud: n He detector (leak to tart purging = ampling train (ppm)	0 x 10 ² 0 x 10 ² 9 x 10 ³ 9 x 10 ³ 1 min 0 x 10 ²	ppm ppm ppm Time Stop Pur 2min Volume purge	3 - Helium Le ging with He de 3min 2 / 0 2 Purge volu ed during He tes	rak Test Flow Rate of H Time start heli Voume purgec Helium detect etector (leak te 4min O x / 0 mes et (mL) = 2 Leak Test : 9	during soil boror purge Volumest): /0:17 Smin	e background che (mL) = Purge time (mi	rate (L/min) = neck (mL) = l nin): eak test passed	10 2 0 (Y/N)			
Pressure (i He Detector Model: Background (ambient) of Background (soil bore) Helium concentration in Time Start Purging with Minutes after st He conc so Volume purged during	GASCHECK check: check: n shroud: n He detector (leak to tart purging = ampling train (ppm)	0 x 10 ² 0 x 10 ² 9 x 10 ³ 9 x 10 ³ 1 min 0 x 10 ²	ppm ppm ppm Time Stop Pur 2min Volume purge 5.4 PID Average i	3 - Helium Le ging with He de 3min Purge volued during He tes - Isopropanol	rak Test Flow Rate of H Time start heli Voume purgec Helium detect etector (leak te 4min	during soil boror purge Volumest): /0:17 Smin	e background che (mL) = Purge time (mi Le Total Purge (mi	rate (L/min) = neck (mL) = l nin): eak test passed	10 2 0 ((Y/N)			
Pressure (i He Detector Model: Background (ambient) of Background (soil bore) Helium concentration in Time Start Purging with Minutes after st He conc si Volume purged during	GASCHECK check: check: n shroud: n He detector (leak to tart purging = ampling train (ppm)	0 x 10 ² 0 x 10 ² 9 x 10 ³ 9 x 10 ³ 1 min 0 x 10 ²	ppm ppm ppm Time Stop Pur 2min Volume purge 5.4 PID Average i	3 - Helium Le ging with He de 3min Purge volu ed during He tes - Isopropanol in shroud (ppm)	rak Test Flow Rate of H Time start heli Voume purgec Helium detects etector (leak te 4min O × 10 mes st (mL) = 1 L Leak Test ter Sampling	during soil boror purge Volumest): /0:17 Smin	e background che (mL) = Purge time (mi Lu Total Purge (mi	rate (L/min) = neck (mL) = l in): eak test passed L roud (ppm):	10 2 0 ((Y/N)			
Pressure (i He Detector Model: Background (ambient) of Background (soil bore) Helium concentration in Time Start Purging with Minutes after st He conc s Volume purged during Isopropanol volume ap	GASCHECK check: check: n shroud: n He detector (leak to the start purging = ampling train (ppm) vacuum test (mL) =	0 x 10 ² 0 x 10 ² 9 x 10 ³ 1est): 10:11 1min 0 x 10 ² 38 (A) Pressure pric	ppm ppm Time Stop Pur 2min Volume purge 5.4 PID Average i Flow controller to sampling	ging with He de 3min Purge volued during He tese Isopropanol on shroud (ppm)	rak Test Flow Rate of H Time start heli Voume purgec Helium detects etector (leak te 4min 0 × 10 mes et (mL) = 1 L ter Sampling	during soil bordor purge Volument): / 0.17 Smin (B) + (C)	e background che (mL) = Purge time (mi Lu Total Purge (mi PID Peak in shi Flow controlle Flow controlled of sampling	rate (L/min) = neck (mL) = lin): 6 eak test passed LL) = 50 roud (ppm): 1	10 2 0 ((Y/N)			
Pressure (i He Detector Model: Background (ambient) of Background (soil bore) Helium concentration in Time Start Purging with Minutes after st He conc s Volume purged during Isopropanol volume ap Summa Canister ID: Duplicate Sample ID:	GASCHECK check: check: n shroud: n He detector (leak that purging = ampling train (ppm) vacuum test (mL) = pplied (mL): 1 LOSY LOSY	0 x 10 ² 0 x 10 ² 9 x 10 ³ 1 min 0 x 10 ² 38 (A) Pressure pric (inch	ppm ppm Time Stop Pur 2min Volume purge 5.4 PID Average i Flow controlle or to sampling of Hg):	ging with He de 3min Purge volued during He tese Isopropanol on shroud (ppm)	rak Test Flow Rate of H Time start heli Voume purgec Helium detects etector (leak te 4min O × 10 mes st (mL) = 1 L Leak Test ter Sampling	during soil bordor purge Volumest): / 0.17 Smin (B) + (C) Pressure er (inch	e background che (mL) = Purge time (mi Le Total Purge (m PID Peak in shi Flow controlle flow controlle d of sampling of Hg):	rate (L/min) = neck (mL) = lin): 6 eak test passed vil.) = \$\frac{1}{2} \text{ could (ppm):} r rate (mL/min) r rate (mL/min)	10 2 (Y/N) (Y/N) A) + (B) 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9			
He Detector Model: Background (ambient) of Background (soil bore). Helium concentration in Time Start Purging with Minutes after st He conc s. Volume purged during Isopropanol volume ap	GASCHECK check: check: n shroud: n He detector (leak to tart purging = ampling train (ppm) vacuum test (mL) =	Ox 10 ² Imin Ox 10 ² 38 (A) Pressure pric (inch	ppm ppm ppm Time Stop Pur 2min	ging with He de 3min Purge volued during He tese Isopropanol on shroud (ppm)	rak Test Flow Rate of H Time start heli Voume purgec Helium detects etector (leak te 4min 0 × 10 mes et (mL) = 1 L ter Sampling	during soil bordor purge Volument): / 0.17 Smin (B) + (C)	e background che (mL) = Purge time (mi Le Total Purge (m PID Peak in shi Flow controlle flow controlle d of sampling of Hg):	rrate (L/min) = leck (mL) = lin): leak test passed lock (mL/min): rrate (mL/min): rrate (mL/min) Time st	10 2 0 ((Y/N) A) + (B) 8 8 8 2 6			
He Detector Model: Background (ambient) of Background (soil bore). Helium concentration in Time Start Purging with Minutes after st He conc s. Volume purged during Isopropanol volume ap	GASCHECK check: check: n shroud: n He detector (leak to tart purging = ampling train (ppm) vacuum test (mL) =	Ox 10 ² Imin Ox 10 ² B Pressure pria (inch : - 3 0 : - 3 0	ppm ppm ppm Time Stop Pur 2min X/0 Volume purge 5.4 PID Average i Flow controll- Flow controll- or to sampling of Hg):	ging with He de 3min O x/O Purge volued during He tes Isopropanol in shroud (ppm) Gumma Canister ID: O O Cer ID: O O O O Cer ID: O O O O Cer ID: O O O O O O O O O O O O O O O O O O O	ak Test Flow Rate of H Time start heli Voume purgec Helium detects etector (leak te 4min O × 10 mes et (mL) = 1 L ter Sampling O 88 O 20 2 et Sampling	during soil bordor purge Volumest): / 0.17 Smin Ox / 0.1 (B) + (C)	e background che e (mL) = Purge time (mi Lu Total Purge (m PID Peak in shi Flow controlle Flow controlle d of sampling of Hg):	rate (L/min) = neck (mL) = lin): 6 eak test passed L) = CO roud (ppm): r rate (mL/min) Time st	10 2 0 ((Y/N) A) + (B) 8 8 8 2 6			
He Detector Model: Background (ambient) of Background (soil bore). Helium concentration in Time Start Purging with Minutes after st He conc s. Volume purged during Isopropanol volume ap	GASCHECK check: check: n shroud: n He detector (leak to tart purging = ampling train (ppm) vacuum test (mL) =	Ox 10 ² Imin Ox 10 ² B Pressure pria (inch : - 3 0 : - 3 0	ppm ppm ppm Time Stop Pur 2min	ging with He de 3min Purge volued during He teser ID: OOC Ger ID:	rak Test Flow Rate of H Time start heli Voume purgec Helium detect etector (leak te 4min O x / 0 mes et (mL) = L Leak Test eter Sampling O 2 0 2 et Sampling Time: 0 2 2	during soil bordor purge Volumest): / 0.17 Smin Ox / 0.1 (B) + (C)	e background che (mL) = Purge time (mi Le Total Purge (m PID Peak in shi Flow controlle flow controlle d of sampling of Hg):	rrate (L/min) = leck (mL) = lin): leak test passed lock (mL/min): rrate (mL/min): rrate (mL/min) Time st	10 2 0 ((Y/N) A) + (B) 8 8 8 2 6			
He Detector Model: Background (ambient) of Background (soil bore). Helium concentration in Time Start Purging with Minutes after st He conc s. Volume purged during Isopropanol volume ap Summa Canister ID: Duplicate Sample ID: SVPOZ Canister VG-01 pressure (P) che	GASCHECK check: check: n shroud: n He detector (leak to tart purging = ampling train (ppm) vacuum test (mL) = pplied (mL): I L O O 4 L O O 7 er (Primary Sample) ccks Time: / 0.124	O x 10 ² O x 10	ppm ppm ppm Time Stop Pur 2min X/0 Volume purge 5.4 PID Average i Flow controll- Flow controll- or to sampling of Hg):	Purge volued during He teser ID: OOC Time star Jo (kPa): OoC Soft-g - Genera	ak Test Flow Rate of H Time start heli Voume purged Helium detects etector (leak te 4min 0 × 10 mes et (mL) = 1 L ter Sampling 0 0 8 8 0 2 0 2 et Sampling Time: 10:21 Il Gases	during soil bordor purge Volumest): /0:17 Smin Ox /0 (B)+ (C) Pressure er (inch	e background che (mL) = Purge time (mi Lu Total Purge (m PID Peak in shi Flow controlle flow controlle do of sampling of Hg):	rate (L/min) = neck (mL) = lin): 6 eak test passed LL) = 50 roud (ppm): 1 rrate (mL/min) rrate (mL/min) Time st P (kPa):	10 2 (Y/N) A) + (B) 8 8 8 2 6 -6			
He Detector Model: Background (ambient) of Background (soil bore). Helium concentration in Time Start Purging with Minutes after st He conc s. Volume purged during Isopropanol volume ap	GASCHECK check: check: n shroud: n He detector (leak to text purging = text ampling train (ppm) vacuum test (mL) = text purging train (ppm) vacuum test pu	O x 10 ² O x 10	ppm ppm ppm Time Stop Pur 2min X/0 Volume purge 5.4 PID Average i Flow controll- Flow controll- or to sampling of Hg): O ₂ (%)	ging with He de 3min 2 x/0² Purge volu 2 d during He tes Isopropanol 3 shroud (ppm) Time star 10: 00 Time star 10: 00 Time star 10: 00 BAL (%)	rak Test Flow Rate of H Time start heli Voume purged Helium detects stector (leak te 4min O × 10 mes st (mt) = { 2 Leak Test :	um in: O: 12 during soil bord or purge Volume st): / O: 17 Smin Oy / O Pressure er (inch	e background che e (mL) = Purge time (mi Lu Total Purge (m PID Peak in shi Flow controlle Flow controlle d of sampling of Hg):	rate (L/min) = leck (mL) = lin): leak test passed leak test passed roud (ppm): rrate (mL/min) rrate (mL/min) Time st leak test passed volume test	10 2 (Y/N) A) + (B) 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1			
He Detector Model: Background (ambient) of Background (soil bore). Helium concentration in Time Start Purging with Minutes after st He conc s. Volume purged during Isopropanol volume ap Summa Canister ID: Duplicate Sample ID: SVPOZ Canister VG-01 pressure (P) che	GASCHECK check: check: n shroud: n He detector (leak to tart purging = ampling train (ppm) vacuum test (mL) = pplied (mL): I L O O 4 L O O 7 er (Primary Sample) ccks Time: / 0.124	O x 10 ² O x 10	ppm ppm ppm Time Stop Pur 2min X/0 Volume purge 5.4 PID Average i Flow controll- Flow controll- or to sampling of Hg):	Purge volued during He teser ID: OOC Time star Jo (kPa): OoC Soft-g - Genera	ak Test Flow Rate of H Time start heli Voume purged Helium detects etector (leak te 4min 0 × 10 mes et (mL) = 1 L ter Sampling 0 0 8 8 0 2 0 2 et Sampling Time: 10:21 Il Gases	during soil bordor purge Volumest): /0:17 Smin Ox /0 (B)+ (C) Pressure er (inch	e background che (mL) = Purge time (mi Lu Total Purge (m PID Peak in shi Flow controlle flow controlle do of sampling of Hg):	rate (L/min) = neck (mL) = lin): 6 eak test passed LL) = 50 roud (ppm): 1 rrate (mL/min) rrate (mL/min) Time st P (kPa):	10 2 0 ((Y/N) A) + (B) 8 8 8 2 6			

Soil Vapour Probe ID SVP 0 3

Date:	30 / 03 /	2021		Address:	Rose	Sheet			
Client:	EPA SA			Time onsite:	7:15	Time offsite:	12:30 Sun	pm	
Project Name:	Melrose Par	k		Temperature a	and Weather:	18°C	Sun	my	
Project No:	60610			Field Staff:	AS			'	
		1a	- Calculate N	Maximum Sa	mpling volun	ne (mL)			
Borehole inner diamet	ter 7.5	Length of sand	pack (cm)	50	Sand Porosity				0.4
(cm) Maximum sampling vo				d nack) v Poro	sity	Indicative M	aximum Samplin	g Volume(mL)=	883.125
Waxing an ping ve	Sidine (inc) = 11 x (sai					The second second			
				Maximum Sa	ampling Time	(mins)			
Regulator Flow Rate (mL/min)	80	(mL)	pling Volume	883.125	-A	Maxim	um Sampling Tir	me (minutes) =	11.0
2 -Canister pressur	re VG-02 (valve C	open) (in. Hg) =	include in sect	tion 6.0					
		4.0 - Calculate	e Soil Vapou	r Probe Dead	dspace Volun	ne (Purge Vol	ume)		
Tubing volume (mL) =	∏r2 (tubing radius) >	tubing length (cm)		Total deadspace	e volume (mL)	= implant vol + to	ubing vol #1+#2	+#3
Tubing #1 inner diame	eter (cm) 0.475	Length of tubin	g # 1 (cm) 14	10	Tubing #1 volu	me (mL) = 24	1.78		
Tubing #2 inner diame	eter (cm) 0.475	Length of tubin	g # 2 (cm) 20)	Tubing #2 volu	me (mL) =	3.5		
Tubing #3 inner diame	eter (cm) 0.475	Length of tubin	ig # 3 (cm) 20)	Tubing #3 volu	me (mL) =	3.5		
Implant Volume (mL)	= 16				Total deadspace	e volume (mL)	47.78		
*1/4 inch tubing from SGS ha	is ID of 0.3175cm, 1/4 tubing						m2 for Thermo		
CL	• ***				um in VG-01 over 30	sec (kPa)	16.93 kPa	100 in.H ₂ O	30 in.H
Start	-	Er	nd (kPa) After 30 s	ec	INC	,,,,,	5 in.Hg	24.9 kPa	101.59k
-1	0		10				5 in.ng	24.9 KFd	101.338
4			5.:	3 - Helium L	eak Test				
He Detector Model: Background (ambient Background (soil bore Helium concentration Time Start Purging wi Minutes after	e) check: in shroud: th He detector (leak t	0×102	ppm ppm		Flow Rate of H Time start heli Voume purged Helium detect	um in: (4.40) I during soil bor	Purge time (mi	eck (mL) =	(C)
Background (ambient Background (soil bore Helium concentration Time Start Purging wi Minutes after	c) check: c) check: in shroud: th He detector (leak to	x /0 2 Ox /0 2 test): 9,39	ppm ppm ppm Time Stop Pur	ging with He d	Flow Rate of H Time start heli Voume purged Helium detect etector (leak te	um in: (40 I during soil bor or purge Volum st): 9, 40	e background ch e (mL) = Purge time (mi	rate (L/min) = neck (mL) = / 0 n): 6	10 2 (B) (C)
Background (ambient Background (soil bore Helium concentration Time Start Purging wi Minutes after	c) check: c) check: n in shroud: th He detector (leak to start purging = sampling train (ppm) g vacuum test (mL) =	x /0 2 O x /0 2 test): 9:39 1min O x /0 2	ppm ppm ppm Time Stop Puri 2min 0 × 10 ² Volume purge	ging with He d 3min O X/O Purge volu d during He te	Flow Rate of H Time start heli Voume purget Helium detect etector (leak te 4min - O × 100 umes set (mL) = 12	um in: (40 I during soil bor or purge Volum st): 9, 40	e background ch e (mL) = Purge time (mi Le	rate (L/min) = eck (mL) = // O n): 6 eak test passed (10 2 (B) (C) (Y/N)
Background (ambient Background (soil bore Hellum concentration Time Start Purging wi Minutes after He conc	c) check: c) check: n in shroud: th He detector (leak to start purging = sampling train (ppm) g vacuum test (mL) =	x /0 2 Ox /0 2 est): 9:39 1min Ox /0 2	ppm ppm ppm Time Stop Pur 2min Volume purge 5.4 -	ging with He d 3min O X/O Purge volu d during He te	Flow Rate of H Time start heli Voume purget Helium detect etector (leak te 4min - O × 100 Imes set (mL) = 1 2	um in: { 40 during soil bor purge Volum st): 9, 40 smin	e background ch e (mL) = Purge time (mi Le	rate (L/min) = eck (mL) = / O n): 6 eak test passed (10 2 (B) (C) (Y/N)
Background (ambient Background (soil bore Hellum concentration Time Start Purging wi Minutes after He conc	c) check: c) check: d in shroud: th He detector (leak to start purging = c sampling train (ppm g vacuum test (mL) =	x /0 2 O x /0 2 test): 9:39 1min O x /0 2	ppm ppm ppm Time Stop Pur 2min Volume purge 5.4 -	ging with He d 3min O X/O Purge volu d during He te Isopropance a shroud (ppm	Flow Rate of H Time start heli Voume purget Helium detect etector (leak te 4min	um in: { 40 during soil bor purge Volum st): 9, 40 smin	e background che e (mL) = Purge time (mi Le Total Purge (m	rate (L/min) = eck (mL) = / O n): 6 eak test passed (10 2_ (B) (C) (Y/N)
Background (ambient Background (soil bore Helium concentration Time Start Purging wi Minutes after He conc Volume purged durin Isopropanol volume a	c) check: c) check: d in shroud: th He detector (leak the start purging = c) sampling train (ppm) g vacuum test (mL) = c) applied (mL): 2	x /0 2 Ox /0 2 est): 4:39 1min Ox /0 2	ppm ppm ppm Time Stop Pur 2min 0 x 10 ² Volume purge 5.4 - PID Average in	ging with He d 3min Purge volu d during He te Isopropano a shroud (ppm	Flow Rate of H Time start heli Voume purgec Helium detect etector (leak te 4min	um in: { 40 during soil bor purge Volum st): 9, 40 smin	e background che e (mL) = Purge time (mi Le Total Purge (m	rate (L/min) = eck (mL) = // O n): 6 eak test passed (L) = (coud (ppm): 3	10 2_ (B) (C) (Y/N)
Background (ambient Background (soil bore Helium concentration Time Start Purging wi Minutes after He conc Volume purged durin Isopropanol volume a	c) check: c) check: d in shroud: th He detector (leak the start purging = c) sampling train (ppm) g vacuum test (mL) = c) applied (mL): 2	x /0 2 Ox /0 2 est): 4:39 1min Ox /0 2	ppm ppm ppm Time Stop Pur 2min Volume purge 5.4 - PID Average ir 6.0 - St	ging with He d 3min Purge volu d during He te Isopropand a shroud (ppm	Flow Rate of H Time start heli Voume purget Helium detect etector (leak te 4min O × 100 Imes est (mL) = 1 2 ILeak Test b: 21.	um in: { 40 during soil bor or purge Volum 5 min (B) + (C)	e background che e (mL) = Purge time (mi Le Total Purge (m	rate (L/min) = eck (mL) = // O n): 6 eak test passed (L) = (coud (ppm): 3 rrate (mL/min):	10 2 (B) (C) (Y/N)
Background (ambient Background (soil bore Helium concentration Time Start Purging wi Minutes after He conc Volume purged durin Isopropanol volume a Summa Canister ID: Duplicate Sample ID:	c) check: c) check: d in shroud: th He detector (leak the start purging = c) sampling train (ppm) g vacuum test (mL) = c) applied (mL): 2	x /0 2 Ox /0 2 (est): 9:39 Imin Ox /0 2	ppm ppm ppm Time Stop Pur 2min Volume purge 5.4 - PID Average ir 6.0 - Si Flow controlle Flow controlle r to sampling of Hg):	ging with He d 3min Purge volu d during He te Isopropano n shroud (ppm	Flow Rate of H Time start heli Voume purgec Helium detect etector (leak te 4min	um in: { 40 during soil bor or purge Volum stt): { 40 during soil bor or	e background che e (mL) = Purge time (mi Le Total Purge (m PID Peak in shr	rate (L/min) = eck (mL) = // O n): 6 eak test passed (L) = (coud (ppm): 3 rrate (mL/min):	10 2 (B) (C) (Y/N)
Background (ambient Background (soil bore Helium concentration Time Start Purging wi Minutes after He conc Volume purged durin Isopropanol volume a Summa Canister ID: Duplicate Sample ID: S VP 03 Canis	c) check: c) check: d) in shroud: th He detector (leak to start purging = d) sampling train (ppm) g vacuum test (mL) = dispolied (mL): 2	x /0 2 Ox /0 2 test): 9:39 Imin Ox /0 2 38 (A) Pressure prio (inch c	ppm ppm ppm Time Stop Pur 2min Volume purge 5.4 - PID Average ir 6.0 - Si Flow controlle Flow controlle r to sampling of Hg):	ging with He d 3min O X/O Purge volu d during He te Isopropano a shroud (ppm	Flow Rate of H Time start heli Voume purget Helium detect etector (leak te 4min O × 100 Imes Sist (mL) = 1 2 ILeak Test D: 21. Ster Sampling O 3 1 5 O 0 7 5 with Sampling	um in: { 40 during soil bor or purge Volum stt): { 40 during soil bor or	e background che e (mL) = Purge time (mi Le Total Purge (m PID Peak in shi Flow controlle Flow controlle and of sampling	rate (L/min) = eck (mL) = // O n): 6 eak test passed (L) = (coud (ppm): 3 rrate (mL/min):	10 2 (B) (C) (Y/N)
Background (ambient Background (soil bore Helium concentration Time Start Purging wi Minutes after He conc Volume purged durin Isopropanol volume a Summa Canister ID: Duplicate Sample ID: S VP 03 Canis	c) check: c) check: d in shroud: th He detector (leak to start purging = d sampling train (ppm) g vacuum test (mL) = d pplied (mL): 2 1 LON 3 2 ster (Primary Sample) er (Duplicate Sample)	x /0 2 Ox /0 2 rest): 9:39 Imin Ox /0 2 38 (A) Pressure prior (inch or inch or i	ppm ppm ppm Time Stop Pur 2min 0 x 10 ² Volume purge 5.4 - PID Average in Flow controlle Flow controlle r to sampling of Hg):	ging with He d 3min O X/O Purge volu d during He te Isopropand n shroud (ppm	Flow Rate of H Time start heli Voume purgec Helium detect etector (leak te 4min	um in: (40 during soil bor purge Volum st): 9, 40 Smin (B) + (C)	e background che e (mL) = Purge time (mi Le Total Purge (m PID Peak in shi Flow controlle Flow controlle and of sampling	rate (L/min) = eck (mL) = // O n): 6 eak test passed (L) = (coud (ppm): 3 rrate (mL/min):	10 2 (B) (C) (Y/N)
Background (ambient Background (soil bore Helium concentration Time Start Purging wi Minutes after He conc Volume purged durin Isopropanol volume a Summa Canister ID: Duplicate Sample ID: S VP 0 3 Canist D JP 0 2 Caniste	c) check: c) check: d in shroud: th He detector (leak to start purging = d sampling train (ppm) g vacuum test (mL) = d pplied (mL): 2 1 LON 3 2 ster (Primary Sample) er (Duplicate Sample)	x /0 2 Ox /0 2 rest): 9:39 Imin Ox /0 2 38 (A) Pressure prior (inch or inch or i	ppm ppm ppm Time Stop Pur 2min Volume purge 5.4 - PID Average ir 6.0 - St Flow controlle Flow controlle r to sampling of Hg): O Time: 7:50	ging with He d 3min O X/O Purge volu d during He te Isopropand a shroud (ppm umma Canis er ID: O C Time sta	Flow Rate of H Time start heli Voume purgec Helium detect etector (leak te 4min O × 100 Immes Ist (mL) = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	um in: (40 during soil bor purge Volum st): 9, 40 Smin (B) + (C)	e background che e (mL) = Purge time (mi Le Total Purge (m PID Peak in shi Flow controlle Flow controlle and of sampling of Hg):	rate (L/min) = leck (mL) = leck (mL/min): leck (10 2 (B) (C) (Y/N)
Background (ambient Background (soil bore Helium concentration Time Start Purging wi Minutes after He conc Volume purged durin Isopropanol volume a Summa Canister ID: Puplicate Sample ID: \$\text{VP-0-3} Canister VG-01 pressure (P) ch	c) check: c) check: d in shroud: th He detector (leak to start purging = d sampling train (ppm) g vacuum test (mL) = d pplied (mL): 2 1 LON 3 2 ster (Primary Sample) er (Duplicate Sample)	x /0 2 Ox /0 2 rest): 9:39 Imin Ox /0 2 38 (A) Pressure prior (inch or inch or i	ppm ppm ppm Time Stop Pur 2min Volume purge 5.4 - PID Average ir 6.0 - St Flow controlle Flow controlle r to sampling of Hg): O Time: 7:50	ging with He d 3min Purge volu d during He te Isopropano a shroud (ppm umma Canis er ID: Time sta	Flow Rate of H Time start heli Voume purgec Helium detect etector (leak te 4min O × 100 Immes Ist (mL) = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	um in: (40 during soil bor purge Volum st): 9, 40 Smin (B) + (C)	e background che e (mL) = Purge time (mi Le Total Purge (m PID Peak in shi Flow controlle Flow controlle and of sampling of Hg):	rate (It/min) = leck (mL) = leck (mL/min): leck test passed (leck test p	10 2 (B) (C) (Y/N) A) + (B) + (C) 3.0 Sop Sampling
Background (ambient Background (soil bore Helium concentration Time Start Purging wi Minutes after He conc Volume purged durin Isopropanol volume a Summa Canister ID: Duplicate Sample ID: SVP03 Caniste VG-01 pressure (P) ch	c) check: c) check: d) in shroud: th He detector (leak to start purging = compliant train (ppm) g vacuum test (mL) = compliant (mL): 2 com	x /0 2 Ox /0 2 test): 9: 39 Imin Ox 10 2 38 (A) Pressure prior (inch or content of the con	ppm ppm ppm Time Stop Pur 2min 0 x 10 ² Volume purge 5.4 - PID Average ir 6.0 - Si Flow controlle Flow controlle r to sampling of Hg): 0 Time: 7.50	ging with He d 3min Purge volu d during He te Isopropano a shroud (ppm umma Canis er ID: Time sta P (kPa): P (kPa): O.f-g - Genera	Flow Rate of H Time start heli Voume purget Helium detect etector (leak te 4min O × 100 Imes sist (mL) = 1 2 ILeak Test D: 2 1. Ster Sampling O 3 1 5 O 7 5 Int Sampling I 5 cm Time: 9:53 al Gases H2S (ppm)	um in: (40 during soil bor purge Volum st): 9, 40 Smin (B) + (C)	e background che e (mL) = Purge time (mi Le Total Purge (m PID Peak in shr Flow controlle flow controlle and of sampling of Hg): Time:	rate (It/min) = leck (mL) = leck (mL/min): leck	10 2_ (B) (C) (Y/N) A) + (B) + (C)

Notes:	
PUPOZ	

Soil Vapour Probe ID SVP 6 4

Date:									
Date:	30 / 03 /	/ 2021		Address:	Ferr	1 Am	2		
Client:	EPA SA			Time onsite:	7:15 cm	Time offsite:	12:	30pm Sunny	
Project Name:	Melrose Pa	rk		Temperature a	and Weather:	1400	and	Sunny	
Project No:	60610			Field Staff:	AS			/	
		18	- Calculate	Maximum Sa	ampling volur	ne (mL)			
Borehole inner diame	7.5	Length of sand	pack (cm)	50	Sand Porosity				0.4
(cm) Maximum sampling vo				nd nack) v Porc	sity	Indicative Ma	aximum Samplin	g Volume(mL)=	883.125
wiaximum samping v	oldine (inc) = 11 x (se				- 50	T. percentages		· production	
				Maximum S	ampling Time	(mins)			
Regulator Flow Rate (mL/min)	80	(mL)	ipling Volume	883.125		Maxim	um Sampling Ti	me (minutes) =	11.0
2 -Canister pressu	re VG-02 (valve	C open) (in. Hg) =	include in sec	tion 6.0					-
		4.0 - Calculat	e Soil Vapou	ır Probe Dea	dspace Volun	ne (Purge Vol	ume)		
Tubing volume (mL) =	= ∏r2 (tubing radius)	x tubing length	(cm)		Total deadspa	ce volume (mL) =	implant vol + t	ubing vol #1+#2	+#3
Tubing #1 inner diame	eter (cm) 0.475	Length of tubi	ng # 1 (cm) 1	40	Tubing #1 volu	me (mL) = 24	.78		
Tubing #2 inner diame	eter (cm) 0.475	Length of tubi	ng # 2 (cm) 2	0	Tubing #2 volu	me (mL) =	3.5		
Tubing #3 inner diame	eter (cm) 0.475	Length of tubi	ng # 3 (cm) 2	0	Tubing #3 volu	me (mL) =	3.5		
Implant Volume (mL)	= 16				Total deadspa	ce volume (mL) =	47.78		
*1/4 inch tubing from SGS ha		ng from Thermo has If	of 0.475cm; 1/4 in	ch tubing ∏r2 (tubi	ing radius) is 0.079cn	n2 for SGS and 0.177c	m2 for Thermo		
			5.1 - Shut-in	test Record vacu	um in VG-01 over 30	sec (kPa)			
Star	r t (kPa)	E	nd (kPa) After 30	sec	No	otes	16.93 kPa	100 in.H ₂ O	30 in.Hg
-/1	0		-10				5 in.Hg	24.9 kPa	101.59kPa
		21	l.	5.2 - Vacuur	1.7	lue et		lui-sct	down A
Syringe volume during	g vacuum test (mL) :	= 5 6(A)		rated during te	st (Y/N)	VG-01 maximu	ım (kPa) = 1	Water observe	a (Y/N) /
Time	e (secs)=	2	7	4	5				
Pressure	e (kPA)=	0	0	0	0				
			5	.3 - Helium L	eak Test				
Ha Data star Mandala	GASCHEC	V		. Tremain E	Flow Rate of H	la Datastar:		2	mL/min
He Detector Model: Background (ambient			nnm			um in: 7:34	He supply flow		10
	t) check:	Zylo2	ppm		Name and Address of the Owner, when the Owner, which the	d during soil bore			2 (B)
Background (soil bore		4102	ppm			or purge Volume		ieck (iiic) -	
Helium concentration		9 × 103	ppm	21.11	THE PLANT OF THE PARTY.			(a) 6	(C)
Time Start Purging wi					letector (leak te	1	Purge time (mi	2 14	
	start purging =	1min	2min	3min	4min	5min		eak test passed	(Y/N)
He cond	c sampling train (ppr	m) 04/02	0×10	0×10,	OX/0	20/10			
				Purge volu	umes				
Volume purged durin	ng vacuum test (mL)	= 7 (A)	Volume purge	Purge volu		(B) + (C)	Total Purge (m	nL) = 48	A) + (B) + (C)
Volume purged durin	ng vacuum test (mL)	= 3 (A)	Volume purge	Purge volued during He te	0.00	(B) + (C)	Total Purge (m	nL) = 48	A) + (B) + (C)
			5.4	ed during He te	est (mL) = 12 of Leak Test			70	
Volume purged durin		= 3 (A)	5.4	ed during He te	est (mL) = 12		Total Purge (m	70	A) + (B) + (C)
			5.4 PID Average i	ed during He te - Isopropano	est (mL) = 12 ol Leak Test): 29.	5		70	
	applied (mL):	0	5.4 PID Average i	ed during He te - Isopropano	est (mL) = 12 of Leak Test	5		70	57
		0	5.4 PID Average i	- Isopropand in shroud (ppm	est (mL) = 12 ol Leak Test): 29.	5	PID Peak in shi	70	5/
Isopropanol volume	applied (mL):	0	5.4 PID Average i	- Isopropance n shroud (ppm Gumma Caniser ID:	est (mL) = \(\frac{1}{2}\) ol Leak Test c): \(\frac{2}{2}\) \cdot \(\frac{2}{2}\) ster Sampling	5	PID Peak in shi	roud (ppm):	57
Isopropanol volume a	applied (mL):	7 Pressure pric	5.4 PID Average i 6.0 - 5	- Isopropano n shroud (ppm - Summa Canis er ID: 17 er ID: 17	est (mL) = 12 ol Leak Test :): 29. ster Sampling	Pressure en	PID Peak in shi	r rate (mL/min)	57
Isopropanol volume a Summa Canister ID: Duplicate Sample ID:	applied (mL):	Pressure prid (inch	5.4 PID Average i 6.0 - 5 Flow controll Flow controll or to sampling	- Isopropano n shroud (ppm - Summa Canis er ID: 17 er ID: 17	ol Leak Test ol: 29. ster Sampling	Pressure en	PID Peak in shi	r rate (mL/min)	57
Isopropanol volume a Summa Canister ID: Duplicate Sample ID: Canist	applied (mL): 11008 ister (Primary Sample ter (Duplicate Sample	Pressure pric (inch e):	5.4 PID Average i 6.0 - S Flow controll Flow controll or to sampling of Hg):	- Isopropance in shroud (ppm Summa Canister ID: 17 er ID: 17	oblight (mL) = 12 oblight Leak Test oblight Sampling oblight Sampling oblight Sampling	Pressure er (inch	PID Peak in shi	r rate (mL/min)	\$0 pp Sampling
Isopropanol volume a Summa Canister ID: Duplicate Sample ID: Canist	applied (mL): 11008 ister (Primary Sample ter (Duplicate Sample	Pressure pric (inch e):	5.4 PID Average i 6.0 - S Flow controll Flow controll or to sampling of Hg):	- Isopropance in shroud (ppm Summa Canister ID: 17 er ID: 17	est (mL) = 12 ol Leak Test :): 29. ster Sampling	Pressure er (inch	PID Peak in shi	r rate (mL/min)	S/ SO op Sampling
Isopropanol volume a Summa Canister ID: Duplicate Sample ID: Canist	applied (mL): 11008 ister (Primary Sample ter (Duplicate Sample	Pressure pric (inch e):	Flow controll	- Isopropance in shroud (ppm Summa Canister ID: 17 er ID: 17	est (mL) = 12 ol Leak Test i): 29. ster Sampling ort Sampling ort Sampling	Pressure er (inch	Flow controlle Flow controlle do of sampling of Hg):	r rate (mL/min). r rate (mL/min) Time st	S/ SO op Sampling
Summa Canister ID: Duplicate Sample ID: Canist VG-01 pressure (P) cl	applied (mL): 11008 ister (Primary Sample ter (Duplicate Sample	Pressure pric (inch e):	Flow controll	ed during He te - Isopropano n shroud (ppm Summa Canis er ID: Time sta 7 4	est (mL) = 12 ol Leak Test i): 29. ster Sampling ort Sampling ort Sampling	Pressure er (inch	Flow controlle Flow controlle do of sampling of Hg):	roud (ppm): r rate (mL/min) r rate (mL/min) Time st 7:5	80 pp Sampling
Summa Canister ID: Duplicate Sample ID: Canist VG-01 pressure (P) cl	applied (mL): 11008 ister (Primary Sample ter (Duplicate Sample thecks Time: 74	Pressure pric (inch e): By P (kPa):	Flow controll Flow controll or to sampling of Hg):	- Isopropanc in shroud (ppm Summa Canis er ID: Time sta P (kPa): Office General	est (mL) = 12 ol Leak Test ol: 29. ster Sampling out Sampling Time: 748 al Gases H2S (ppm)	Pressure er (inch	Flow controlle Flow controlle flow controlle of Hg): Time:	r rate (mL/min) r rate (mL/min) Time st 7:5	\$0 pp Sampling
Summa Canister ID: Duplicate Sample ID: Canist VG-01 pressure (P) cl	applied (mL): 11 00 8 ister (Primary Sample ter (Duplicate Sample thecks Time: 74	Pressure pric (inch e): By P (kPa):	Flow controll Flow controll or to sampling of Hg):	- Isopropand n shroud (ppm Summa Canis er ID:	est (mL) = 12 ol Leak Test ol: 29. ster Sampling out Sampling Time: 748 al Gases H2S (ppm)	Pressure en (inch	Flow controlle Flow controlle flow controlle of Hg): Time:	r rate (mL/min). r rate (mL/min) Time st 7:5 P (kPa):	SO PID (ppm

Soil Vapour Probe ID SVP 5
Installation type Soil Vapour Bore

Date:	30 / 03 /	2021		Address:	Ferr	Ase					
Client:	EPA SA	2021		Time onsite:	7:15	Time offsite:	12:70	dia.			
Project Name:	Melrose Par	k		Temperature	and Weather:	16°C	" and	Surry			
Project No:	60610			Field Staff: AS							
		1.	Calculate	Maximum C	maling volum	ma (ml)					
Borehole inner diamete	er				ampling volur	ne (mr)			0.4		
(cm)	7.5	Length of sand		50	Sand Porosity				0.4		
Maximum sampling vol	ume (mL) = ∏ x (sar	nd pack radius) ²	x (Lengh of sa	nd pack) x Porc	osity	Indicative Ma	aximum Samplin	g Volume(mL)=	883.125		
		1	b - Calculate	Maximum S	ampling Time	(mins)					
Regulator Flow Rate (mL/min)	80	Maximum San (mL)	npling Volume	883.125		Maxim	um Sampling Ti	me (minutes) =	11.0		
2 -Canister pressure	VG-02 (valve C	open) (in. Hg) =	include in sec	ction 6.0							
		4.0 - Calculat	e Soil Vapou	ur Probe Dea	dspace Volun	ne (Purge Vol	ume)				
Tubing volume (mL) = T	Tr2 (tubing radius) x	tubing length ((cm)		Total deadspace	e volume (mL) =	= implant vol + t	ubing vol #1+#2	+#3		
Tubing #1 inner diamet	er (cm) 0.475	Length of tubi	ng # 1 (cm) 1	40	Tubing #1 volu	me (mL) = 24	.78				
Tubing #2 inner diamet	er (cm) 0.475	Length of tubi	ng # 2 (cm) 2	0	Tubing #2 volu	me (mL) =	3.5				
Tubing #3 inner diamet	er (cm) 0.475	Length of tubi	ng # 3 (cm) 2	0	Tubing #3 volu	me (mL) =	3.5				
Implant Volume (mL) =	16				Total deadspace	ce volume (mL) =	47.78				
*1/4 inch tubing from SGS has	ID of 0.3175cm, 1/4 tubing	from Thermo has I	of 0.475cm; 1/4 in	nch tubing ∏r2 (tubi	ing radius) is 0.079cm	2 for SGS and 0.177c	m2 for Thermo				
			5.1 - Shut-in	test Record vacu	um in VG-01 over 30						
Start	^	E	nd (kPa) After 30	sec	No	otes	16.93 kPa	100 in.H ₂ O	30 in.Hg		
-1	U		-10				5 in.Hg	24.9 kPa	101.59kPa		
				5.2 - Vacuui	m test						
Syringe volume during	vacuum test (mL) =	Z8(A)	Vaccum gene	rated during te	st (Y/N)	VG-01 maximu	ım (kPa) = 🔿	Water observe	d (Y/N) /		
	1	7	7	4	5-						
Time (100	0	0	0	Ó						
Flessure	KPAJ=										
			5	.3 - Helium L	eak Test						
He Detector Model:	GASCHECK				Flow Rate of H	le Detector:		2	mL/min		
Background (ambient)	check:	×10°	ppm		Time start heli	um in: 8	He supply flow	rate (L/min) =	10		
Background (soil bore)	check:	×10°	ppm		Voume purgeo	d during soil bore	e background ch	neck (mL) =	Z (B)		
Helium concentration i	n shroud:	7105	ppm		(TANDANA LANGUAGE	or purge Volume		10	(C)		
Time Start Purging with	He detector (leak t	est): 8:19	Time Stop Pu	rging with He d	letector (leak te	st): 8:25	Purge time (mi	in): 6			
Minutes after s	tart purging =	1min	2min	3min	4min	5min		eak test passed (Y/N)		
He conc s	ampling train (ppm)	O YIS	0 ×10	- OXIO	10 110°	0x10	4	Y			
				Durge vels							
Volume purged during	vacuum test (mL) =	38(A)	Volume purg	Purge volu ed during He te		(B) + (C)	Total Purge (m	L) = 50 (/	A) + (B) + (C)		
			5.4	- Isopropano	ol Leak Test			1			
Isopropanol volume ap	oplied (mL): 7	0		in shroud (ppm	~ ~	4.3	PID Peak in shi	roud (ppm):	55.		
			6.0 - 9	Summa Canis	ster Sampling	- 1					
Summa Canister ID:	16016	2	Flow controll	- 11	643	900159	Flow controlle	r rate (mL/min):	80		
Duplicate Sample ID:	16010	2	Flow controll	- 16	0014	7		r rate (mL/min):	80		
SHROUDOI	1 - 0 10	Pressure pric	or to sampling of Hg):		art Sampling	The second secon	nd of sampling of Hg):		p Sampling		
Canist	er (Primary Sample)	= 31	D	8:	26 an		1	8:	36		
Canister	(Duplicate Sample)	-31	0	8.	26 am	-	5	8	36		
VG-01 pressure (P) che	ecks Time: 8 2	P (kPa):	Time: 8:3	P (kPa):	en.	4P (kPa): 0	Time:	P (kPa):			
				6.f-g - Gener	al Gases						
						Park Control	Dave December	VG-01 (kPa)	PID (ppm)		
Time (min) CH ₄ (%)	CO ₂ (%)	02 (%)	BAL (%)	H2S (ppm)	CO (ppm)	Baro Pressure	10-01 (KPa)	rio (ppin,		
Time (min) CH ₄ (%)	co ₂ (%)	02(%)	78.7	H2S (ppm)	CO (ppm)	Baro Pressure	VG-01 (KPa)	2.7		
		CO ₂ (%)	17.3	78.7 28.8		-	1027		2.7		

Appendix F Groundwater Field Sampling Sheet

GROUNDWATER FIELD PARAMETERS

Project Number:	60610	WELL ID	GW3034
Client:	GPB\$ SA	Purging date:	3013/2021
Site Location:	Melrose Park	Sampling date:	30/7/2021
Field Sampler(s):	AS	Stick up (m):	_
Casing Diameter (mm):	50mm / 100mm / 150mm	Depth to NAPL (mBTOC):	~
Well completion:	Gatic) Standpipe	Depth to SWL (mBTOC):	3.372
Cap type:	Envirocap PVC End cap	NAPL thickness (m):	_
Well condition:	Comprimised Good	Well Depth (mBTOC):	6.62
	Purge /	Water Column Depth (m)	3.248
Sampling method:	Low Flow: Pump submersion	depth (mBTOC): 5. []	Sampling SWL (mBTOC): 3.550

Volume Purged	Dissolved Oxygen	Electrical Conductivity	рН	Redox Potential	Temperature	Comments	Time
L	% □ _{ppm} ☑	S/cm @25°C	pH units	mV	°C	SWL for low flow (mBTOC)	
1	6.35	4665	7.24	257.1	27.0	3.580	11:23
1.4	0.08	4949	7.17	235.5	23.7	3.50	10:26
1.8	0.15	4990	7.16	233.0	23.2	3.560	11:29
2.2	0.24	4954	7.14	228.0	22.7	3.500	11:32
2.6	0.26	4985	7.13	226.8	23.3	3.560	11:35
3.0	0.43	5029	7.12	224.7	23.3	3.55	10:38
3.4	0.44	5031	7.12	224.0	23.3	3.55	10:41
Acceptable Variation	+/-10%	+/-5%	+/- 0.1pH unit	+/- 10mV	+/- 0.1 °C	Field results acceptable:	YES / NO

LOW FLOW: Max. flow rate = 0.5 L/min - Max. drawdown = 0.1 m - Well stable when 3 consecutive readings (either 3min apart or 1L apart)

PURGE: Min. sampling volume is 4 casing volumes or dry twice - 1 casing volume (50mm wells) = 2 L/m - 1 casing volume (100mm wells) = 8 L/m

3.8	0.45	5039	7.11	223.0	23.3	3.55	11.44	
Turbidity		Hig / Medium / I	-ow	Hydrocarbon shee	en?	YES /NO		
Colour:	Ora	ne brow	'n	Odour:		Non	e	
		/						

Primary sample ID:	GW 3034	Container	No.	Preservative
Duplicate sample ID:	DUPOI	40mL Vial	2	HCI y other
Triplicate sample ID:	- S(L)701	200/500mL Glass		none / H ₂ SO ₄
Rinse blank after?	(YES) NO ID: LEO	500mL Plastic		none / other
Samples filtered for metals?	YES / NO	80mL Plastic		H ₂ SO ₄ / none / other
Filter Method:	0.45um Storicup filter MA	80mL Plastic		HNO ₃ / none / other
Water Quality Meter:	YSP (hire)	80mL Plastic		NaOH / none/ other
Dipper / Interface probe:	IP (hire)			
Pump:	Micropurge (hue)			

Notes:	PID	4.3	lop ste	ady a	t. Zppm	21	lins	
Punp	is	0.44 m	Long	CPM	1 54/6	@	\$0 pi	
	Trip	Spike =	WSP	7893	DI	2	MO 806	
	a some	Spike = Black =			644	res	11/5/21	Ravision 3

Appendix G Groundwater Bore Database Search Results (WaterConnect 2021)

Unit_No	Drillhole Class	Aquifer	Origin	al Drill	Maxim	um Drill	Last	Open	Permit No.	Cased To	Casing Diameter	Purpose	Lastest	Status	
			Depth	Date	Depth	Date	Depth	Date					Status	Date	DTW
6627-7341	Water Well	Qpah	32	1/05/1985	32	1/05/1985	32	1/05/1985	16750	25	150	Domestic	Operational		1.8
6627-8914	Water Well	Qpah	18	20/06/1994	18	20/06/1994	18	20/06/1994	31941	18	100	Domestic			
6628-12475	Water Well	Qpah	7.3		7.3			24/06/1983	11523	7.3	95	Domestic	Operational		2.4
6628-12530	Water Well	Qpah	13.7	13/10/1983	13.7	13/10/1983	13.7	13/10/1983	13114	13.7	95	Domestic	Operational		2.1
6628-12609	Water Well	Qpah	25	14/12/1983	25	14/12/1983	24.9	14/12/1983	13724	24.9	100	Domestic	Operational		3.4
6628-13083	Water Well	Qpah	14.5	22/10/1984	14.5	22/10/1984	14.5	22/10/1984	15399	14.5	95	Domestic	Operational		4
6628-13118	Water Well	Qpah	6	5/01/1984	6	5/01/1984	6	5/01/1984	15860			Domestic	Operational		2.13
6628-13289	Water Well	Qpah	11	16/11/1984	11	16/11/1984	11	16/11/1984	15359	11	95	Domestic	Operational		3.7
6628-13455	Water Well	Qpah	62.5	20/11/1984	62.5	20/11/1984	62.5	20/11/1984	93921	54	75	Domestic	Operational		
6628-13525	Water Well	Qpah	20	19/11/1985	20	19/11/1985	20	19/11/1985	17644	20	100	Domestic	Operational		4
6628-13583	Water Well	Qpah	14.6	16/01/1986	14.6	16/01/1986	14.6	16/01/1986	17852	14.6	95	Domestic	Operational		3
6628-14058	Water Well	Qpah	13.5	15/09/1990	13.5	15/09/1990	13.5	15/09/1990	24641	13.5	100	Domestic	Operational		7
6628-14234	Water Well	Qpah	15	2/05/1988	15	2/05/1988	15	2/05/1988	20952	15	95	Domestic	Operational		10.3
6628-14286	Water Well	Qpah	17	26/09/1988	17	26/09/1988	17	26/09/1988	21668	17	100	Domestic	Operational		12.5
6628-14305	Water Well	Qpah	18.8	24/10/1988	18.8	24/10/1988	18.8	24/10/1988	21681	18.8	100	Domestic	Operational		9.1
6628-14334	Water Well	Qpah	15.2	25/10/1988	15.2	25/10/1988	15.2	25/10/1988	22179	15.2	100	Domestic	Operational		9.1
6628-14401	Water Well	Qpah	20.7	22/04/1989	20.7	22/04/1989	20.7	22/04/1989	22565	20.7	100	Domestic	Operational		9.5
6628-15229	Water Well	Qpah	13.5	18/03/1990	13.5	18/03/1990	13.5	18/03/1990	23537	10	50	Domestic	Operational		3.3
6628-15317	Water Well	Qpah	15.5	4/07/1990	15.5	4/07/1990	15.5	4/07/1990	24458	15	100	Domestic	Operational		5.2
6628-15413	Water Well	Qpah	7.5	26/12/1990	7.5	26/12/1990	7.5	26/12/1990	25003	7.5	152	Domestic	Operational		6
6628-15414	Water Well	Qpah	19	15/12/1990	19	15/12/1990	19	15/12/1990	24977	19	100	Domestic	Operational		3
6628-15424	Water Well	Qpah	15.5	7/01/1991	15.5	7/01/1991	15.5	7/01/1991	24977	15.5	100		•		9.5
6628-15560		+	5	1/02/1991		1/02/1991		1/02/1991	25381	5	100	Domestic	Operational		9.5
6628-15599	Water Well Water Well	Qpah	23.4		5 23.4	1/02/1991	5 23.4	1/02/1991	25381	23.4	100	Domestic	Operational		17
		Qpah		1/08/1991		· ·						Domestic	Operational		
6628-15638	Water Well	Qa+Qpah	11.8	27/09/1991	11.8	27/09/1991	11.8	27/09/1991	26158	11.8	100	Domestic	Operational		5.3
6628-15732	Water Well	Qpah	15	23/11/1991	15	23/11/1991	15	23/11/1991	26393	15	100	Domestic	Operational		7.5
6628-15833	Water Well	Qpah	18	12/12/1991	18	12/12/1991	18	12/12/1991	26594	18	95	Domestic	Operational		5
6628-15835	Water Well	Qpah	18	12/12/1991	18	12/12/1991	18	12/12/1991	26593	18	95	Domestic	Operational		4.5
6628-15923	Water Well	Qpah	18	28/02/1992	23	15/07/1992		15/07/1992	27126	23	100	Domestic	Operational		0
6628-15925	Water Well	Qpah	25.5	23/12/1991	25.5	23/12/1991	25.5	23/12/1991	26727	25.5	100	Domestic	Operational		14.1
6628-15953	Water Well	Qpah	17.3	24/12/1991	17.3	24/12/1991	17.3	24/12/1991	26680	17.3	100	Domestic	Operational		5.7
6628-16009	Water Well	Qpah	29.2	14/03/1992	29.2	14/03/1992	29.2	14/03/1992	26697	23	100	Domestic	Operational		16.2
6628-16245	Water Well	Qpah			24	12/02/1993		12/02/1993	28924	24	100	Domestic			15.6
6628-16246	Water Well	Qpah			18	8/02/1993		8/02/1993	28932	18	100	Domestic			5
6628-16248	Water Well	Qpah	6.6	5/01/1993	6.6	5/01/1993	6.6	5/01/1993	27320	4.25		Domestic			
6628-16379	Water Well	Qpah	21	3/11/1992	21	3/11/1992	21	3/11/1992	28481	21	100	Domestic			
6628-16382	Water Well	Qpah	18	10/12/1992	18	10/12/1992	18	10/12/1992	27926	18	100	Domestic			
6628-16390	Water Well	Qpah	14	24/04/1993	14	24/04/1993	14	24/04/1993	29472	14	100	Domestic			4
6628-16680	Water Well	Qpah	15	21/12/1993	15	21/12/1993	15	21/12/1993	30740	15	100	Domestic			2.6
6628-16726	Water Well	Qpah	25	26/10/1994	25	26/10/1994	25	26/10/1994	32645	25	100	Domestic			
6628-16744	Water Well	Qpah	21	7/09/1994	21	7/09/1994	21	7/09/1994	32315	21	100	Domestic			5
6628-16745	Water Well	Qpah	18	6/09/1994	18	6/09/1994	18	6/09/1994	32402	18	100	Domestic			
6628-16829	Water Well	Qpah	24	9/12/1994	24	9/12/1994	24	9/12/1994	32859	24	100	Domestic			
6628-16925	Water Well	Qpah	22.5	24/11/1994	22.5	24/11/1994	22.5	24/11/1994	32812	22.5	100	Domestic			
6628-16943	Water Well	Qpah	24	27/01/1995	24	27/01/1995	24	27/01/1995	33256	24	100	Domestic			
6628-16957	Water Well	Qpah	18	7/02/1995	18	7/02/1995	18	7/02/1995	33618	18	100	Domestic			
6628-16959	Water Well	Qpah	16.5	20/02/1995	16.5	20/02/1995	16.5	20/02/1995	33832	16.5		Domestic			
6628-16971	Water Well	Qpah	16.5	20/01/1995	16.5	20/01/1995	16.5	20/01/1995	33654	16.5	100	Domestic			
6628-17086	Water Well	Qpah	25	14/02/1995	25	14/02/1995	25	14/02/1995	32930	25	100	Domestic			
6628-17361	Water Well	Qpah	26	27/06/1995	26	27/06/1995	26	27/06/1995	34656	26	100	Domestic			
6628-17486	Water Well	Qpah	24	30/08/1995	24	30/08/1995	24	30/08/1995	35487	24	94	Domestic			
6628-17515	Water Well	Qpah	30	11/12/1995	30	11/12/1995	30	11/12/1995	36258	30	100	Domestic			11.9
6628-17520	Water Well	Qpah	22.3	20/12/1995	22.3	20/12/1995	22.3	20/12/1995	36365	22.3	100	Domestic			
6628-17541	Water Well	Qpah	27	4/01/1996	27	4/01/1996	27	4/01/1996	36638	27	100	Domestic			
0020 17371	TTACCI VVCII	- Црип		., 51, 1550		., 51, 1550		., 51, 1550	30030		100	Domestic	1	<u> </u>	

Sept. Sept. Sept. Sept. Sept. Code Pair Co	Unit_No	Wat	ter Level			Salinity	/		рН		Yield	MGT Easting	MGA Northing	Hundred	Plan	Parcel	Title
Color	_	SWL	RSWL	Date	TDS	EC	Date	рН		Yield	Date		J				
Company	6627-7341	1.8	68.48	1/05/1985	1759	3170	1/05/1985	7.8	1/05/1985	3.75	1/05/1985	280021.34	6124045.7	ADELAIDE	F13435	A52	CT 5833 294
Control Cont	6627-8914				2704	4840	1/07/1994	6.7	1/07/1994			277312.3	6123614.81	ADELAIDE	D8184	A4	CT 5593 955
Control Cont	6628-12475	2.4	19.49	24/06/1983	2058	3700	24/05/1983	7.4	24/05/1983			277610.41	6126020.73	ADELAIDE	F11438	A226	CT 5617 289
Septiminary	6628-12530	2.1	86.9	13/10/1983	661	1200	13/10/1983	7.1	13/10/1983	1.2	13/10/1983	281184.29	6124910.71	ADELAIDE	D3026	A36	CT 5702 838
6608-13189 7.3 16.66 5607/3984 9900 8327 4/0017/398	6628-12609	3.4	15.37	14/12/1983	1390	2510	14/12/1983	8.39	14/12/1983	0.7	14/12/1983	277283.37	6126577.72	ADELAIDE	D86686	A2	CT 6085 74
9282-11989 J. 7. 289 1611/12986 J. 66 1611/12986 J. 67 1611/12986 J. 67 1611/12986 J. 67 1611/12986 J. 78 1611/12986 J. 78 1611/12986 J. 79 16	6628-13083	4	27.87	22/10/1984	1194	2160	22/10/1984	7.8	22/10/1984	1.5	22/10/1984	278772.33	6126486.77	ADELAIDE	S667		
	6628-13118	2.13	16.66	5/01/1984	1960	3527	14/01/1985					277316.37	6127145.72	ADELAIDE	D7300	A6	CT 5302 533
6228-13525 4 15.9 \$71271985 1278 2999 19/11/1985 77.9 19/11/1985 77.9 19/11/1985 77.8 16/11/1985 7	6628-13289	3.7	28.91	16/11/1984	1446	2610	16/11/1984	8.6	16/11/1984	1.5	16/11/1984	278886.36	6125992.72	ADELAIDE	D3417	A189	CT 5482 357
	6628-13455				2001	3600	6/09/1985	7.2	6/09/1985	0.2		281185.3	6124910.73	ADELAIDE	D3026	A36	CT 5702 838
	6628-13525	4	15.9	5/12/1985	1378	2490	19/11/1985	7.9	19/11/1985	0.75	19/11/1985	277479.36	6126984.76	ADELAIDE	S544		
CG23+1428 O.3 A4-01 \$12071298 311 \$270 \$13071298 7.8 \$20571988 T. \$20571988 \$2799033 \$12581271 \$ADELADE \$74-6 A180 \$C7579327 \$C757482 \$27067198 \$7.9 \$270671998 \$7.9 \$270671998 \$7.9 \$270671998 \$7.9 \$270671998 \$7.9 \$270671998 \$7.9 \$270671998 \$7.9 \$270671998 \$7.9 \$270671999 \$7.9 \$	6628-13583	3	29.14	24/02/1986	2318	4160	16/01/1986	7.3	16/01/1986	1.25	16/01/1986	278827.42	6125413.78	ADELAIDE	D3280	A33	CT 5147 43
6628-14286 12-5 34.3 19/10/1988 10-8 1933 26/10/1988 7-9	6628-14058	7	33	2/10/1990	1256	2271	2/10/1990	7.4	15/09/1990	1.2	15/09/1990	279521.36	6126433.77	ADELAIDE	F12136	A117	CT 5411 907
60281-81395 9.1 34.28 30/11/1988 1289 2330 30/11/1988 7.5 24/10/1988 1.2 24/10/1988 27891-937 612579988 ADELINDE D746 A175 CT 5541 631 65081-84101 9.5 35.56 8(95)1989 7190 2509 25091-939 7.5 27/04/1989 7.7	6628-14234	10.3	34.01	13/07/1988	1311	2370	13/07/1988	7.8	2/05/1988	1	2/05/1988	279905.33	6125812.71	ADELAIDE	D746	A180	CT 5705 927
6628-14334 9.1 34.28 6/02/1909 1500 1500 6/02/1909 7.2 6/02/1909 7.2 6/02/1909 7.2 5/03/1909 175 72/04/1909 7.25 72/04/1909 7.	6628-14286	12.5	34.3	19/10/1988	1068	1933	26/10/1988	7.9	26/10/1988	0.8	26/09/1988	280056.3	6126222.7	ADELAIDE	D3210	A333	CT 5749 803
6628-1529 3 18.17 27081990 1074 1943 86051989 79 270471989 175 270471990 1750074 612995-75 ADRIADIC D1739 A22 CT5551267 6628-15317 5.2 25.3 6/07/1990 205 2181 6/07/1990 79. 4/06/1990 1.2 4/07/1990 27750074 612995-75 ADRIADIC D2734 ADRIADIC D2735	6628-14305	9.1	34.28	30/11/1988	1289	2330	30/11/1988	7.5	24/10/1988	1.2	24/10/1988	279829.37	6125799.88	ADELAIDE	D746	A175	CT 5541 631
	6628-14334	9.1	34.28	6/02/1989	1390	2509	6/02/1989	7.2	6/02/1989	1.2	25/10/1988	279829.37	6125799.88	ADELAIDE	D746	A175	CT 5541 631
6628-15437 5.2 25.8 \$6/07/1990 1205 131 \$6/07/1990 7.9 4/06/1990 12.2 4/07/1990 7878716-31 \$127025.74 \$ADELINE D2144 AS3 CT 5501.290 6628-15414 3 15.06 17/12/1990 10659 18128 17/12/1990 7.35 16/12/1990 1.1 15/12/1990 7.7083.38 612601.78 \$ADELINE D3258 AS310 CT 53701.090 10628-15414 3 15.06 17/12/1990 10659 18128 17/12/1990 7.35 16/12/1990 0.1 15/12/1990 7.7083.38 612601.78 \$ADELINE D4209 A347 CT 5767.98 6628-15540 4 21.28 1/02/1991 1278 2311	6628-14401	9.5	35.56	8/05/1989	1074	1943	8/05/1989	7.9	22/04/1989	1.75	22/04/1989	279960.32	6126762.7	ADELAIDE	D1739	A22	CT 5551 267
	6628-15229	3	18.17	27/03/1990	1418	2560	27/03/1990	7.45	18/03/1990	0.6	18/03/1990	277620.41	6126996.75	ADELAIDE	S4027		
6628-15444 3 15.06 17/12/1990 10659 18128 17/12/1990 7.35 16/12/1990 0.1 15/12/1990 27/081.38 6126-801.78 ADELANDE D.4209 A.347 C.75/09/1991 6628-154549 95 30.5 7/01/1991 1278 2.311 1.70 1/1991 1.78 7/01/1991 27/09/09/1991 27/09/09/1991 27/09/1991 27/09/1991 27/09/1991 27/09/1991 27/09/1991 27/09/1991 27/09/1991 27/09/1991 27/09/09/09/09/09/09/09/09/09/09/09/09/09/	6628-15317	5.2	25.8	6/07/1990	1205	2181	6/07/1990	7.9	4/06/1990	1.2	4/07/1990	278716.31	6127025.74	ADELAIDE	D2144	A53	CT 5591 290
6628-15599 17 39.86 22/06/1991 1238 2239 20/13/2010 6 1/08/1991 1 1/08/1991 280817.34 6126614.74 ADELAIDE D766 A260 CT 5672 986 6628-15599 17 39.86 22/06/1991 1238 2239 20/13/2010 6 1/08/1991 1 1/08/1991 280817.34 6126614.74 ADELAIDE D2855 A127 CT 5743.867 6678-15638 5.3 31.12 77/09/1991 1178 2331 23/13/1991 7.7 77/09/1991 1 27/09/1991 779714.34 6126614.74 ADELAIDE D2855 A127 CT 5743.867 6678-15638 5.3 31.12 77/09/1991 1178 2331 23/13/1991 7.1 23/13/1991 1 27/09/1991 779714.34 6126614.74 ADELAIDE D2855 A127 CT 5743.867 6678-15638 5.3 31.12 77/09/1991 1178 2331 23/13/1991 7.1 23/13/1991 1 27/09/1991 779714.34 612683.74 ADELAIDE D2855 A127 CT 5743.867 6678-15838 5 26.91 12/09/1992 107 1860 21/01/1992 7.2 12/13/1991 0.8 12/12/1991 778820.3 6126885.74 ADELAIDE D122880 A77 CT 5643 109 6628-15839 4.5 27.09 21/01/1992 107 1860 21/01/1992 7.4 12/12/1991 1 78820.3 6126885.74 ADELAIDE D122880 A781 CT 6623 109 6628-15839 4.5 27.09 21/01/1992 107 1860 21/01/1992 7.4 12/12/1991 1 78820.3 6126885.74 ADELAIDE D4666 A2 CT 5663 457 6628-15992 0 57.25 28/02/1992 100 21/01/1992 107 1860 24/12/1991 0.75 23/12/1991 0.75 23/12/1991 278820.3 6126873.79 ADELAIDE D4666 A2 CT 5663 457 6628-15993 14.1 83.63 3/03/1992 100 21/01/1992 1.7 1 23/03/1993 1 1 1/07/1991 27960.54 612637.70 ADELAIDE D2855 A266 CT 512/7249 6628-15993 14.1 83.65 3/03/1992 100 21/01/1992 1.7 1 23/03/1993 1 1 1 1/03/1992 280818.37 6126727.76 ADELAIDE D3855 A266 CT 512/7249 6628-16264 5 15.6 35.69 23/02/1993 150 23/02/1993 7.1 23/02/1993 1 1 14/03/1992 280818.37 6126727.76 ADELAIDE D3856 A266 CT 512/7249 6628-16264 5 15.6 35.69 23/02/1993 150 23/02/1993 7.1 23/02/1993 1 1 14/03/1992 280818.37 6126727.76 ADELAIDE D3856 A266 CT 55678 356 6628-16264 5 15.6 35.69 23/02/1993 150 23/02/1993 7.1 23/02/1993 1 1 14/03/1992 280818.37 6126727.75 ADELAIDE D3856 A266 CT 55678 356 6628-16267 1 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	6628-15413	6	27.44	8/01/1991	1732	3120	8/01/1991	7.6	26/12/1990			278981.37	6125517.75	ADELAIDE	D3528	A510	CT 5374 10
6628-15550 4 21.28 10/21/1991 1278 2311 2323 20/12/2010 6 1/08/1991 1 1/08/1991 278017.34 6127329.63 ADELAIDE D2614 A19 CT5130 708 6628-15539 17 38.66 22/08/1991 1184 21.32 22/12/1991 7.1 22/108/1991 1 27/08/1991 27911.34 612678.37 ADELAIDE D2654 A77 CT5748.87	6628-15414	3	15.06	17/12/1990	10659	18128	17/12/1990	7.35	16/12/1990	0.1	15/12/1990	277083.38	6126301.78	ADELAIDE	D4209	A347	CT 5709 918
6628-15599 17 39.86 22/08/1991 138 239 20/12/2010 6 1/08/1991 1 1/08/1991 280817.34 612/661.74 ADELANDE 0.2855 A127 CT5743.837 6628-15732 7.5 3.2 23/11/1991 1178 2131 23/11/1991 7.1 23/11/1991 1 27/09/1991 27924.34 612/683.74 ADELANDE 0.12/200 0.2855 A27 CT5743.837 6628-15833 5 26.91 21/01/1992 1178 2131 23/11/1991 7.1 23/11/1991 0.8 12/11/1991 27863.03 612/683.74 ADELANDE 0.12/200 A781 CT6234-109 6628-15833 5 26.91 21/01/1992 1027 1060 21/01/1992 7.4 21/21/1991 0.8 21/21/1991 278693.03 612/683.74 ADELANDE 0.14/646 A2 CT5663-457 6628-15923 0 57.25 28/02/1992 0.27 3/03/1992 7.4 21/21/1991 0.8 21/21/21/991 0.8	6628-15424	9.5	30.5	7/01/1991	1525	2751	7/01/1991	7.8	7/01/1991	1	7/01/1991	279613.35	6125681.67	ADELAIDE	D746	A260	CT 5672 98
6628-15328 53 3112 27/09/1991 1184 2142 27/09/1991 7 27/09/1991 1 27/09/1991 27951.43 6126832.74 ADELAIDE D.5634 A.77 C.7563.202 6628-15337 5 26.91 21/01/1992 1121 2029 21/01/1992 7.2 12/12/1991 0.8 12/12/1991 27859.03 6126832.74 ADELAIDE D.4646 A4 C.75.09.290 6628-15333 5 26.91 21/01/1992 1027 1860 21/01/1992 7.2 12/12/1991 0.8 12/12/1991 27859.03 6126832.74 ADELAIDE D.4646 A4 C.75.09.290 6628-15335 4.5 27.09 21/01/1992 1027 1860 21/01/1992 7.4 12/12/1991 1 12/12/1991 27859.03 6126832.74 ADELAIDE D.4646 A2 C.75.663.487 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6628-15560	4	21.28	1/02/1991	1278	2311						278167.42	6127329.63	ADELAIDE	D2614	A19	CT 5130 708
6628-15732 7.5 32 23/11/1991 1178 2131 23/11/1991 7.1 23/11/1991 7.2 23/11/1991 278790.2 6126532.71 ADELAIDE D122980 A781 CT 6234 179 C628-15833 5 26.91 21/01/1992 1121 2029 21/01/1992 7.2 12/12/1991 1 12/12/1991 278790.2 6126882.68 ADELAIDE D4646 A2 CT 5603 457 ADE	6628-15599	17	39.86	22/08/1991	1238	2239	20/12/2010	6	1/08/1991	1	1/08/1991	280817.34	6126614.74	ADELAIDE	D2855	A127	CT 5743 887
6628-15833 5 26.91 21/01/1992 1027 1860 21/01/1992 7.4 12/12/1991 1 12/12/1991 27820.33 6126885.74 ADELAIDE D4646 A2 CT 5603 457 6628-15832 0 57.25 28/02/1992	6628-15638	5.3	31.12	27/09/1991	1184	2142	27/09/1991	7	27/09/1991	1	27/09/1991	279214.34	6126783.74	ADELAIDE	D5634	A77	CT 5643 202
6628-15923 Go.	6628-15732	7.5	32	23/11/1991	1178	2131	23/11/1991	7.1	23/11/1991			279454.28	6126532.71	ADELAIDE	D122980	A781	CT 6234 109
6628-15925 14.1 36.36 37.25 28/02/1992 1200 2171 3/03/1992 7.1 23/12/1991 0.75 23/12/1991 20379.29 6126523.73 ADELAIDE D2955 A266 CT 5127 248 CT 5	6628-15833	5	26.91	21/01/1992	1121	2029	21/01/1992	7.2	12/12/1991	0.8	12/12/1991	278820.3	6126885.74	ADELAIDE	D4646	A4	CT 5409 290
6628-16975 14.1 36.36 3/03/1992 1200 1211 3/03/1992 7.1 23/12/1991 0.75 23/12/1991 279606.34 6126337.7 ADELAIDE D2955 A266 CT.5127.249 CT.5499.38 CT.5499.39 CT.5499.38 CT.5499.39 CT.	6628-15835	4.5	27.09	21/01/1992	1027	1860	21/01/1992	7.4	12/12/1991	1	12/12/1991	278790.32	6126882.68	ADELAIDE	D4646	A2	CT 5663 457
6628-16593 5.7 35.27 24/12/1991 1027 1860 24/12/1991 7.2 24/12/1991 1 24/12/1991 279606.34 6126379.77 ADELAIDE F12136 A130 CT 5499 38 6628-16209 16.2 32.5 9/04/1992 909 1647 9/04/1992 7.7 14/03/1992 1 14/03/1992 280244.3 6126376.5 ADELAIDE D2955 A205 CT 5678 356 6628-16246 5 15.6 35.59 23/02/1993 1300 2350 23/02/1993 7.1 23/02/1993 27092.34 6127154.73 ADELAIDE D3495 A248 A9 CT 5571 305 6628-16248 1 1925	6628-15923	0	57.25	28/02/1992								280818.37	6126727.76	ADELAIDE	D2855	A629	CT 5637 121
6628-16209 16.2 32.5 9/04/1992 909 1647 9/04/1992 7.7 14/03/1992 1 14/03/1992 280244.3 6126567.65 ADELAIDE D2955 A205 CT 5678 356 6628-16245 15.6 35.69 23/02/1993 517 940 23/02/1993 7.3 23/02/1993 2702/1993 2702/1993 1200 23/02/1993 7.1 23/02/1993 2702/1993 127092/34 6121547.3 ADELAIDE D3450 A848 CT 5377 710 6628-16248	6628-15925	14.1	36.36	3/03/1992	1200	2171	3/03/1992	7.1	23/12/1991	0.75	23/12/1991	280379.29	6126523.73	ADELAIDE	D2955	A246	CT 5127 249
6628-16245 15.6 35.69 23/02/1993 517 940 23/02/1993 7.3 23/02/1993 0.2 280437.25 6125979.59 ADELAIDE D3450 A848 CT 5377 710 6628-16246 5 29.37 23/02/1993 1300 2350 23/02/1993 7.1 23/02/1993 0.279092.34 6127154.73 ADELAIDE D4394 A9 CT 5571 305 6628-16248 T	6628-15953	5.7	35.27	24/12/1991	1027	1860	24/12/1991	7.2	24/12/1991	1	24/12/1991	279606.34	6126379.77	ADELAIDE	F12136	A130	CT 5499 38
6628-16246 5 29.37 23/02/1993 1300 2350 23/02/1993 7.1 23/02/1993	6628-16009	16.2	32.5	9/04/1992	909	1647	9/04/1992	7.7	14/03/1992	1	14/03/1992	280244.3	6126567.65	ADELAIDE	D2955	A205	CT 5678 356
6628-16348 1064	6628-16245	15.6	35.69	23/02/1993	517	940	23/02/1993	7.3	23/02/1993			280437.25	6125979.59	ADELAIDE	D3450	A848	CT 5377 710
6628-16379 1581 2851 24/11/1992 7.1 24/11/1992 280087.41 6125724.75 ADELAIDE F34100 A109 CT 5144 20 6628-16382 1183 2142 6/01/1993 7.4 6/01/1993 280087.3 6124669.71 ADELAIDE D3715 A108 CT 5635 322 2870.244 6/01/1993 2770.244 6/01/1993 277327.32 6127164.86 ADELAIDE D821 A180 CT 5638 385 A628-16726 A000	6628-16246	5	29.37	23/02/1993	1300	2350	23/02/1993	7.1	23/02/1993			279092.34	6127154.73	ADELAIDE	D4394	A9	CT 5571 305
6628-16382	6628-16248				1064	1925						278595.34	6127274.65	ADELAIDE	D4394	A73	CT 5697 789
6628-16390 4 18.15	6628-16379				1581	2851	24/11/1992	7.1	24/11/1992			280087.41	6125724.75	ADELAIDE	F34100	A109	CT 5144 20
6628-16680 2.6 16.29 21/12/1993 1856 3340 9/06/1994 7.1 9/06/1994 0.76 21/12/1993 277327.32 6127164.86 ADELAIDE D821 A180 CT 5638 385 6628-16726 938 1700 10/11/1994 7.2 10/11/1994 1.5 26/10/1994 279982.36 6126924.73 ADELAIDE D3845 A264 CT 5729 857 6628-16744 5 11.48 7/09/1994 3396 6050 7/09/1994 6.6 6/09/1994 279982.37 612638.18 ADELAIDE D84153 A701 CT 6059 606 6628-16829 961 1740 9/12/1994 6.6 9/12/1994 280777.46 6126764.85 ADELAIDE D84153 A701 CT 6059 606 6628-16829 961 1740 9/12/1994 6.6 9/12/1994 280777.46 6126764.85 ADELAIDE D84153 A701 CT 6059 606 628-16829 970 12/06/1995 7.1 27/01/1995 970 280492.24 6126089.59 ADELAIDE D3176 A504 CT 5757 6 6628-16959 970 1402 1402 1402 1402 1402 1402 1402 140	6628-16382				1183	2142	6/01/1993	7.4	6/01/1993			280827.3	6124669.71	ADELAIDE	D3715	A108	CT 5635 322
6628-16726 938 1700 10/11/1994 7.2 10/11/1994 1.5 26/10/1994 279982.36 6126924.73 ADELAIDE D3845 A264 CT 5729 857 6628-16744 5 11.48 7/09/1994 3396 6050 7/09/1994 6.6 7/09/1994 279982.36 6126354.81 ADELAIDE F10581 A538 CT 5211 698 6628-16745 1066 1930 6/09/1994 6.6 6/09/1994 279592.37 6126689.55 ADELAIDE D84153 A701 CT 6059 606 6628-16829 961 1740 9/12/1994 6.6 9/12/1994 280777.46 6126764.85 ADELAIDE D2855 A17 CT 5227 465 6628-16925 1266 2290 24/11/1994 7.4 24/11/1994 279137.31 6127519.66 ADELAIDE D3176 A504 CT 5757 6 628-16943 1049 1900 27/01/1995 7 27/01/1995 280492.24 6126089.69 ADELAIDE D3176 A504 CT 5757 6 628-16959 4182 7410 7/02/1995 7 7/02/1995 27702.38 612589.58 ADELAIDE D289 A157 CT 5740 170 6628-16959 1497 2701 20/01/1995 6.9 20/01/1995 120/02/1995 277202.38 612589.58 ADELAIDE D3289 A157 CT 5329 484 6628-17361 1043 1890 14/02/1995 7.2 14/02/1995 0.4 14/02/1995 280392.43 612589.69 ADELAIDE D3450 A841 CT 5273 602 6628-17361 19 42.85 11/12/1995 1088 1970 11/12/1995 7.6 20/12/1995 0.5 30/08/1995 280152.47 612569.66 ADELAIDE D246 A300 CT 5713 36 6628-17515 11.9 42.85 11/12/1995 1088 1970 11/12/1995 7.6 20/12/1995 1 20/12/1995 280682.4 612569.66 ADELAIDE D746 A313 CT 5519 987	6628-16390	4	18.15									277702.44		ADELAIDE	F11099	A71	CT 5398 157
6628-16726	6628-16680	2.6	16.29	21/12/1993	1856	3340	9/06/1994	7.1	9/06/1994	0.76	21/12/1993	277327.32	6127164.86	ADELAIDE	D821	A180	CT 5638 385
6628-16745	6628-16726				938	1700	10/11/1994	7.2	10/11/1994	1.5	26/10/1994	279982.36	6126924.73	ADELAIDE	D3845	A264	CT 5729 857
6628-16829 961 1740 9/12/1994 6.6 9/12/1994 280777.46 6126764.85 ADELAIDE D2855 A17 CT 5227 465 6628-16925 1 1266 2290 24/11/1994 7.4 24/11/1994 279137.31 6127519.66 ADELAIDE F10242 A42 CT 5397 576 6628-16943 1 1049 1900 27/01/1995 7 27/01/1995 280492.24 6126089.69 ADELAIDE D3176 A504 CT 5757 6 6628-16957 1 4182 7410 7/02/1995 7 7/02/1995 27701/1995 27702.38 6125409.86 ADELAIDE D3176 A504 CT 5740 170 6628-16959 1 4182 7410 7/02/1995 7.1 20/02/1995 277202.38 6125869.58 ADELAIDE D3176 A504 CT 5740 170 6628-16971 1 1497 2701 20/01/1995 7.2 14/02/1995 0.4 14/02/1995 280392.43 6126114.81 ADELAIDE D3450 <	6628-16744	5	11.48	7/09/1994	3396	6050	7/09/1994	6.6	7/09/1994			276882.47	6126354.81	ADELAIDE	F10581	A538	CT 5211 698
6628-16925 1266 2290 24/11/1994 7.4 24/11/1994 279137.31 6127519.66 ADELAIDE F10242 A42 CT 5397 576 6628-16943 1049 1900 27/01/1995 7 27/01/1995 280492.24 6126089.69 ADELAIDE D3176 A504 CT 5757 6 6628-16957 4182 7410 7/02/1995 7 7/02/1995 276872.34 6125409.86 ADELAIDE D2289 A157 CT 5740 170 6628-16959 3407 6070 20/02/1995 7.1 20/02/1995 277202.38 6125869.58 ADELAIDE P11643 A82 CT 5824 556 6628-16971 1497 2701 20/01/1995 6.9 20/01/1995 0.4 14/02/1995 280392.43 612514.81 ADELAIDE D3528 A495 CT 5329 484 6628-17361 1043 1890 14/02/1995 7.2 14/02/1995 0.4 14/02/1995 280392.43 6126114.81 ADELAIDE D3450 A841 CT 5373 602	6628-16745				1066	1930		6.6	6/09/1994			279592.37	6126689.55	ADELAIDE	D84153	A701	CT 6059 606
6628-16925 1266 2290 24/11/1994 7.4 24/11/1994 279137.31 6127519.66 ADELAIDE F10242 A42 CT 5397 576 6628-16943 1049 1900 27/01/1995 7 27/01/1995 280492.24 6126089.69 ADELAIDE D3176 A504 CT 5757 6 6628-16957 4182 7410 7/02/1995 7 7/02/1995 276872.34 6125409.86 ADELAIDE D2289 A157 CT 5740 170 6628-16959 3407 6070 20/02/1995 7.1 20/02/1995 277202.38 6125869.58 ADELAIDE F11643 A82 CT 5824 556 6628-16971 1497 2701 20/01/1995 6.9 20/01/1995 279262.52 6125559.63 ADELAIDE D3528 A495 CT 5329 484 6628-17086 1043 1890 14/02/1995 7.2 14/02/1995 0.4 14/02/1995 280392.43 6126114.81 ADELAIDE D3450 A841 CT 5373 602 6628-17361 1048	6628-16829				961	1740	9/12/1994	6.6	9/12/1994			280777.46	6126764.85	ADELAIDE	D2855	A17	CT 5227 465
6628-16943 1049 1049 1900 27/01/1995 7 27/01/1995 280492.24 6126089.69 ADELAIDE D3176 A504 CT 5757 6 6628-16957 4182 7410 7/02/1995 7 7/02/1995 276872.34 6125409.86 ADELAIDE D2289 A157 CT 5740 170 6628-16959 3407 6070 20/02/1995 7.1 20/02/1995 A20/01/1995 ADELAIDE F11643 A82 CT 5824 556 6628-16971 41497 2701 20/01/1995 6.9 20/01/1995 A1402/1995 ADELAIDE D3528 A495 CT 5824 556 6628-17086 4197 1497 2701 20/01/1995 7.2 14/02/1995 0.4 14/02/1995 280392.43 6126114.81 ADELAIDE D3450 A841 CT 5239 484 6628-17361 5574 9790 27/06/1995 7.1 27/06/1995 27/06/1995 279167.61 6124764.61 ADELAIDE F12973 A21 CT 5809 17 6628-17365 <	6628-16925				1266	2290		7.4				279137.31	6127519.66	ADELAIDE	F10242	A42	CT 5397 576
6628-16957 4182 7410 7/02/1995 7 7/02/1995 276872.34 6125409.86 ADELAIDE D2289 A157 CT 5740 170 6628-16959 3407 6070 20/02/1995 7.1 20/02/1995 20/01/1995 277202.38 6125869.58 ADELAIDE F11643 A82 CT 5824 556 6628-16971 4002/1995 1497 2701 20/01/1995 6.9 20/01/1995 20/01/1995 279262.52 6125559.63 ADELAIDE D3528 A495 CT 5329 484 6628-17086 1043 1890 14/02/1995 7.2 14/02/1995 0.4 14/02/1995 280392.43 6126114.81 ADELAIDE D3450 A841 CT 5273 602 6628-17361 1043 1890 14/02/1995 7.1 27/06/1995 279167.61 6124764.61 ADELAIDE D3450 A841 CT 5273 602 6628-17362 11.9 42.85 11/12/1995 1300 30/08/1995 7 30/08/1995 0.5 30/08/1995 280152.47 612568	6628-16943				1049	1900		7	27/01/1995			280492.24	6126089.69	ADELAIDE	D3176	A504	CT 5757 6
6628-16959 3407 6070 20/02/1995 7.1 20/02/1995 20/01/1995 <t< td=""><td>6628-16957</td><td></td><td></td><td></td><td>4182</td><td>7410</td><td></td><td>7</td><td></td><td></td><td></td><td>276872.34</td><td></td><td>ADELAIDE</td><td>D2289</td><td>A157</td><td>CT 5740 170</td></t<>	6628-16957				4182	7410		7				276872.34		ADELAIDE	D2289	A157	CT 5740 170
6628-16971 1497 2701 20/01/1995 6.9 20/01/1995 0.4 14/02/1995 279262.52 612559.63 ADELAIDE D3528 A495 CT 5329 484 6628-17086 1043 1890 14/02/1995 7.2 14/02/1995 0.4 14/02/1995 280392.43 6126114.81 ADELAIDE D3450 A841 CT 5273 602 6628-17361 5574 9790 27/06/1995 7.1 27/06/1995 27/9167.61 6124764.61 ADELAIDE F12973 A21 CT 5809 177 6628-17486 750 1360 30/08/1995 7 30/08/1995 0.5 30/08/1995 280152.47 6125689.69 ADELAIDE D746 A300 CT 5721 36 6628-17515 11.9 42.85 11/12/1995 1088 1970 11/12/1995 7.6 11/12/1995 0.5 11/12/1995 280682.4 6126599.73 ADELAIDE D746 A313 CT 5519 987 6628-17520 1390 2510 20/12/1995 7.6 20/12/1995 <								7.1									
6628-17086 1043 1890 14/02/1995 7.2 14/02/1995 0.4 14/02/1995 280392.43 6126114.81 ADELAIDE D3450 A841 CT 5273 602 6628-17361 5574 9790 27/06/1995 7.1 27/06/1995 279167.61 6124764.61 ADELAIDE F12973 A21 CT 5809 177 6628-17486 750 1360 30/08/1995 7 30/08/1995 0.5 30/08/1995 280152.47 6125689.69 ADELAIDE D746 A300 CT 5721 36 6628-17515 11.9 42.85 11/12/1995 1088 1970 11/12/1995 7.6 11/12/1995 0.5 11/12/1995 280682.4 6126599.73 ADELAIDE D2955 A260 CT 5181 386 6628-17520 1390 2510 20/12/1995 7.6 20/12/1995 1 20/12/1995 279942.55 6125659.66 ADELAIDE D746 A313 CT 5519 987						2701											+
6628-17361 5574 9790 27/06/1995 7.1 27/06/1995 27/06/1995 27/106/1995 27/106/1995 27/106/1995 27/106/1995 27/106/1995 27/106/1995 27/106/1995 27/106/1995 27/106/1995 27/106/1995 27/106/1995 27/106/1995 27/106/1995 28/106/1995 28/105/106/1995 28/105/106/1995 28/105/106/1995 28/105/106/1995 28/105/106/1995 28/105/106/1995 28/105/106/1995 28/105/106/1995 28/105/106/1995 28/105/106/1995 28/105/106/1995 28/105/106/1995 28/105/106/106/106/1995 28/105/106/106/106/106/106/106/106/106/106/106										0.4	14/02/1995						
6628-17486 Description Tool 1360 30/08/1995 7 30/08/1995 0.5 30/08/1995 280152.47 6125689.69 ADELAIDE D746 A300 CT 5721 36 6628-17515 11.9 42.85 11/12/1995 1088 1970 11/12/1995 7.6 11/12/1995 0.5 11/12/1995 280682.4 6126599.73 ADELAIDE D2955 A260 CT 5181 386 6628-17520 1390 2510 20/12/1995 7.6 20/12/1995 1 20/12/1995 279942.55 6125659.66 ADELAIDE D746 A313 CT 5519 987																	_
6628-17515 11.9 42.85 11/12/1995 1088 1970 11/12/1995 7.6 11/12/1995 0.5 11/12/1995 280682.4 6126599.73 ADELAIDE D2955 A260 CT 5181 386 6628-17520 1390 2510 20/12/1995 7.6 20/12/1995 1 20/12/1995 279942.55 6125659.66 ADELAIDE D746 A313 CT 5519 987										0.5	30/08/1995						+
6628-17520 1390 2510 20/12/1995 7.6 20/12/1995 1 20/12/1995 279942.55 6125659.66 ADELAIDE D746 A313 CT 5519 987		11.9	42.85	11/12/1995													
		-		. ,						1							+
	6628-17541				1094	1980	4/01/1996	6.9	4/01/1996	1	4/01/1996	280247.57	6126879.63	ADELAIDE	D2121	A7	CT 5088 397

Unit_No	Drillhole Class	Aquifer	Origin	al Drill	Maxim	num Drill	Last	Open	Permit No.	Cased To	Casing Diameter	Purpose	Lastes	t Status	
_			Depth	Date	Depth	Date	Depth	Date				·	Status	Date	DTW
6628-17542	Water Well	Qpah	16	8/01/1996	16	8/01/1996	16	8/01/1996	36637	16	100	Domestic			
6628-17551	Water Well	Qpah	14.2	18/12/1995	14.2	18/12/1995	14.2	18/12/1995	36475	14.2	100	Domestic			5.2
6628-17628	Water Well	Qpah	24	7/12/1995	24	7/12/1995	24	7/12/1995	36445	24	94	Domestic			
6628-17655	Water Well	Qpah	18	4/02/1996	18	4/02/1996	18	4/02/1996	36515	18	100	Domestic			
6628-17658	Water Well	Qpah	13.5	15/01/1996	13.5	15/01/1996	13.5	15/01/1996	36651	13.5	100	Domestic			
6628-17815	Water Well	Qpah	23	1/04/1996	23	1/04/1996	23	1/04/1996	37059	23	100	Domestic			
6628-17843	Water Well	Qpah	17	28/02/1996	17	28/02/1996	17	28/02/1996	36939	17	100	Domestic			
6628-17846	Water Well	Qpah	18	29/02/1996	18	29/02/1996	18	29/02/1996	37174	18	100	Domestic			
6628-17860	Water Well	Qpah	16	11/04/1996	16	11/04/1996	16	11/04/1996	37429	16	100	Domestic			3.6
6628-17954	Water Well	Qpah	18	16/08/1996	18	16/08/1996	18	16/08/1996	38377	18	100	Domestic			3.0
6628-17955	Water Well	Qpah	12	14/08/1996	12	14/08/1996	12	14/08/1996	38017	12	100	Domestic			2.4
6628-18117	Water Well	Qpah	30	11/12/1996	30	11/12/1996	30	11/12/1996	39040	30	94	Domestic			9
6628-18123	Water Well	Qpah	30	13/11/1996	30	13/11/1996	30	13/11/1996	39010	11	94	Domestic			11
6628-18151	Water Well	Qpah	25	17/05/1996	25	17/05/1996	25	17/05/1996	35891	25	100	Domestic			15.8
			30						37222	30	94				15.6
6628-18185	Water Well	Qpah		17/05/1996	30	17/05/1996	30	17/05/1996				Domestic			7.5
6628-18232	Water Well	Qpah	18	5/12/1996	18	5/12/1996	18	5/12/1996	39224	18	100	Domestic			7.5
6628-18247	Water Well	Qpah	21	21/02/1997	21	21/02/1997	21	21/02/1997	39109	21	94	Domestic			8
6628-18316	Water Well	Qpah	8	1/09/1996	8	1/09/1996	8	1/09/1996	37178	8	102	Domestic			3.2
6628-18370	Water Well	Qpah	15	20/01/1997	15	20/01/1997	15	20/01/1997	39383	15	102	Domestic			3
6628-18371	Water Well	Qpah	11.8	4/05/1997	11.8	4/05/1997	11.8	4/05/1997	40404	12	102	Domestic			6
6628-18490	Water Well	Qpah	24	14/02/1997	24	14/02/1997	24	14/02/1997	38600	24	100	Domestic	Operational	14/02/1997	15
6628-18542	Water Well	Qpah	19	17/05/1997	19	17/05/1997	19	17/05/1997	39382	17.5	100	Domestic			12
6628-18543	Water Well	Qpah	24	9/02/1997	24	9/02/1997	24	9/02/1997	39066	24	100	Domestic			11
6628-18585	Water Well	Qpah	36	14/11/1995	36	14/11/1995	35.5	14/11/1995	34372	35.5	100	Domestic			15
6628-18724	Water Well	Qpah	22.5	23/10/1997	22.5	23/10/1997	22.5	23/10/1997	42753	22.5	100	Domestic			14.4
6628-18725	Water Well	Qpah	10	9/03/1997	10	9/03/1997	10	9/03/1997	42879		152	Domestic			4
6628-18770	Water Well	Qpah	29	20/11/1997	29	20/11/1997	29	20/11/1997	41534	29	94	Domestic			6
6628-18828	Water Well	Qpah	21	29/01/1998	21	29/01/1998	21	29/01/1998	43709	21	100	Domestic			6
6628-18856	Water Well	Qpah	27	19/02/1998	27	19/02/1998	27	19/02/1998	44166	27	100	Domestic			18
6628-18868	Water Well	Qpah	24	18/02/1998	24	18/02/1998	24	18/02/1998	44118	24	100	Domestic			12
6628-19369	Water Well	Qpah	22	12/01/1999	22	12/01/1999	22	12/01/1999	47402	22	100	Domestic			9
6628-19414	Water Well	Qpah	18	19/02/1999	18	19/02/1999	18	19/02/1999	47960	18	100	Domestic			4.8
6628-19454	Water Well	Qpah	24	25/02/1999	24	25/02/1999	24	25/02/1999	47779	24	96	Domestic			15
6628-19462	Water Well	Qpah	16.5	29/03/1999	16.5	29/03/1999	16.5	29/03/1999	48505	16.5	100	Domestic			6
6628-19496	Water Well	Qpah	30	4/04/1999	30	4/04/1999	30	4/04/1999	48274	30	94	Domestic			10
6628-19497	Water Well	Qpah	30	16/05/1999	30	16/05/1999	30	16/05/1999	48580	30	94	Domestic			9
6628-20468	Water Well	Qpah	19.5	18/12/2000	19.5	18/12/2000	19.5	18/12/2000	54179	18.5	100	Domestic			8
6628-20514	Water Well	Qpah	28.5	14/02/2001	28.5	14/02/2001	28.5	14/02/2001	54609	28.5	100	Domestic			17
6628-20516	Water Well	Qpah	16	6/03/2001	16	6/03/2001	16	6/03/2001	54803	16	100	Domestic			3
6628-20585	Water Well	Qpah	16	3/11/2000	16	3/11/2000	16	3/11/2000	52319	16	100	Domestic			4.2
6628-20658	Water Well	Qpah	25.5	28/07/2001	25.5	28/07/2001	25.5	28/07/2001	55952	25.5	100	Domestic			9
6628-20719	Water Well	Qpah	16	9/11/2001	16	9/11/2001	16	9/11/2001	56478	16	105	Domestic			3
6628-20918	Water Well	Qpah(Q1)	29	7/06/2000	29	7/06/2000	29	7/06/2000	50186	29	24				18
												Domestic			
6628-21040	Water Well	Qpah Opah	30	11/11/2001	30	11/11/2001	30	11/11/2001	56256	11 9	94	Domestic			11 9
6628-21218	Water Well	Qpah Onah	30	8/11/2002	30	8/11/2002	30	8/11/2002	58838		94	Domestic			-
6628-21333	Water Well	Qpah	10	26/05/2003	10	26/05/2003	10	26/05/2003	62016	10	100	Domestic			3
6628-21560	Water Well	Qpah	7.5	12/11/2003	7.5	12/11/2003	7.5	12/11/2003	63728	5	100	Domestic			4
6628-21563	Water Well	Qpah	14	8/09/2003	14	8/09/2003	14	8/09/2003	62688	10	100	Domestic			4
6628-21576	Water Well	Qpah	30	11/12/2003	30	11/12/2003	30	11/12/2003	63925	24	100	Domestic			4
6628-21577	Water Well	Qpah	31	26/11/2003	31	26/11/2003	31	26/11/2003	63613	28	100	Domestic			17
6628-21611	Water Well	Qpah	27	22/01/2004	27	22/01/2004	25	22/01/2004	64208	19	100	Domestic			18
6628-21871	Water Well	Qpah	28	19/07/2004	28	19/07/2004	28	19/07/2004	66154	24.5	100	Domestic			10
6628-22530	Water Well	Qpah			5.2		5.2		41823		90	Domestic			4.8
6628-13427	Water Well	Qpah	39.6	9/08/1984	39.6	9/08/1984	39.6	9/08/1984	14510	12	150	Industrial	Operational		6

Unit_No	Wat	er Level			Salinity	/		рH		Yield	MGT Easting	MGA Northing	Hundred	Plan	Parcel	Title
	SWL	RSWL	Date	TDS	EC	Date	pН	Date	Yield	Date	J	J				
6628-17542				1154	2090	8/01/1996	7.1	8/01/1996			279102.47	6126389.77	ADELAIDE	D5114	A4	CT 5684 985
6628-17551	5.2	15.01	18/12/1995	5794	10150	18/12/1995	7.35	18/12/1995	0.75	18/12/1995	277387.43	6126274.69	ADELAIDE	D2860	A71	CT 5488 673
6628-17628				683	1240	7/12/1995	7.2	7/12/1995	0.5	7/12/1995	278807.41	6127484.8	ADELAIDE	D6436	A11	CT 5267 381
6628-17655				3167	5650	4/02/1996	7.4	4/02/1996			276782.51	6125784.72	ADELAIDE	D2289	A30	CT 5744 849
6628-17658				4222	7480	15/01/1996	6.9	15/01/1996	1	15/01/1996	278227.59	6125314.63	ADELAIDE	D3703	A170	CT 5641 55
6628-17815				1496	2700	1/04/1996	6.8	1/04/1996	1	1/04/1996	279787.5	6125649.7	ADELAIDE	F11730	A16	CT 5366 75
6628-17843				1468	2650	19/02/1996	7.5	19/02/1996	0.4	28/02/1996	277812.57	6125769.82	ADELAIDE	F11723	A27	CT 5269 251
6628-17846				1066	1930	29/02/1996	7.3	29/02/1996	0.32	29/02/1996	279612.37	6126689.81	ADELAIDE	D1739	A141	CT 5722 915
6628-17860	3.6	15.13	11/04/1996	1423	2570	11/04/1996	7	11/04/1996			277297.46	6126924.93	ADELAIDE	F10794	A430	CT 5239 527
6628-17954				1591	2870	16/08/1996	7.4	16/08/1996	1	16/08/1996	278802.51	6127479.8	ADELAIDE	D6436	A11	CT 5267 381
6628-17955	2.4	15.01	14/08/1996	2103	3780	14/08/1996	7.6	14/08/1996			277127.52	6127044.65	ADELAIDE	D821	A111	CT 5666 74
6628-18117	9	13.37	11/12/1996	2960	5290	11/12/1996	7.4	11/12/1996	0.5	11/12/1996	277787.55	6127129.8	ADELAIDE	D2773	A44	CT 5709 665
6628-18123	11	38.15	13/11/1996	6774	11800	16/11/1996			0.5	11/11/1996	280407.32	6125314.68	ADELAIDE	D3438	A119	CT 5714 263
6628-18151	15.8	35.12	17/05/1996	1244	2250	17/05/1996	6.3	17/05/1996	0.32	17/05/1996	280392.54	6126394.74	ADELAIDE	D3176	A358	CT 5743 305
6628-18185									0.5	17/05/1996	280652.31	6124919.78	ADELAIDE	D5513	A52	CT 5511 18
6628-18232	7.5	23.86	5/12/1996	1072	1940	5/12/1996					278777.48	6126929.77	ADELAIDE	D4412	A8	CT 5694 951
6628-18247	8	30.46	21/02/1997	1116	2020	21/02/1997			0.5	21/02/1997	279387.33	6126479.58	ADELAIDE	F12136	A107	CT 5201 468
6628-18316	3.2	22.88	1/09/1996								278192.41	6126929.76	ADELAIDE	D3553	A90	CT 5742 970
6628-18370	3	18.24	20/01/1997								277217.47	6125169.78	ADELAIDE	F12140	A90	CT 5265 841
6628-18371	6	12.78	4/05/1997	4431	7840	4/05/1997					276647.53	6125104.77	ADELAIDE	D4764	A45	CT 5675 524
6628-18490	15	14.67	14/02/1997	5749	10070	14/02/1997					278487.47	6124964.76	ADELAIDE	D3034	A56	CT 5710 995
6628-18542	12	35.25	17/05/1997	1099	1990	17/05/1997			0.25	17/05/1997	280087.47	6126229.67	ADELAIDE	D3210	A338	CT 5106 958
6628-18543	11	18.3	9/02/1997								278427.49	6124959.75	ADELAIDE	C21934		
6628-18585	15	36.5	14/11/1995						1.2	14/11/1995	280412.44	6126254.71	ADELAIDE	D3176	A352	CT 5239 444
6628-18724	14.4	31.81	23/10/1997	1239	2240	23/10/1997					280002.45	6125974.77	ADELAIDE	D746	A12	CT 5278 795
6628-18725	4	14.58	9/03/1997	2978	5320	31/10/1997			0.5	31/10/1997	277182.54	6126434.74	ADELAIDE	D4344	A385	CT 5698 367
6628-18770	6	13.48	20/11/1997	3591	6390	20/11/1997			0.5	20/11/1997	277282.55	6126319.75	ADELAIDE	F11102	A9	CT 5806 495
6628-18828	6	27.04	29/01/1998	1367	2470	29/01/1998			0.5	29/01/1998	278927.51	6125979.73	ADELAIDE	D3417	A191	CT 5669 233
6628-18856	18	39.07	19/02/1998	1066	1930	19/02/1998					280847.45	6126429.78	ADELAIDE	D2855	A134	CT 5270 220
6628-18868	12	21.01	18/02/1998	1088	1970	20/02/1998			0.35	18/02/1998	278897.4	6126354.72	ADELAIDE	D67342	A2	CT 5943 332
6628-19369	9	11.43	12/01/1999	15249	25300	10/02/1999			0.1	12/01/1999	277407.5	6126249.76	ADELAIDE	D2860	A70	CT 5377 806
6628-19414	4.8	25.24	19/02/1999	1490	2690	19/02/1999			0.4	19/02/1999	278757.5	6127444.74	ADELAIDE	F9518	A82	CT 5086 975
6628-19454	15	58.84	25/02/1999						0.2	25/02/1999	280772.46	6124644.75	ADELAIDE	D48586	A9	CT 5627 138
6628-19462	6	25.59	29/03/1999	1255	2270	29/03/1999			1	29/03/1999	278792.47	6126989.74	ADELAIDE	D2144	A101	CT 5326 512
6628-19496	10	29.45	4/04/1999	899	1630	4/04/1999			0.5	4/04/1999	279547.43	6127399.72	ADELAIDE	D5438	A10	CT 5658 356
6628-19497	9	35.53	16/05/1999	1625	2930	16/05/1999			0.5	16/05/1999	280037.45	6125629.76	ADELAIDE	D746	A385	CT 5653 967
6628-20468	8	22.08	18/12/2000	1328	2400	18/12/2000			0.7	18/12/2000	278764.71	6127659.47	ADELAIDE	D2992	A31	CT 5724 977
6628-20514	17	37.51	14/02/2001	1177	2130	14/02/2001			0.5	14/02/2001	280718.72	6125826.54	ADELAIDE	D3171	A784	CT 5749 432
6628-20516	3	28.44	6/03/2001	5167	9100	6/03/2001			0.6	6/03/2001	278537.78	6124796.49	ADELAIDE	D3034	A38	CT 5467 420
6628-20585	4.2	12.8	3/11/2000	3322	5920	3/11/2000			1.5	3/11/2000	276733.75	6126003.52	ADELAIDE	D3102	A346	CT 5707 843
6628-20658	9	30.98	28/07/2001	865	1570	28/07/2001			1	27/07/2001	279521.76	6126458.53	ADELAIDE	F12136	A117	CT 5411 907
6628-20719	3	18.54	9/11/2001	1850	3330	9/11/2001			0.4	9/11/2001	277668.73	6127465.55	ADELAIDE	F9174	A112	CT 5695 848
6628-20918	18	2.12	7/06/2000	4182	7410	24/02/2005	7.5	24/02/2005	0.3	7/06/2000	277235.76	6125591.24	ADELAIDE	D2236	A170	CT 5118 640
6628-21040	11	37.3	11/11/2001	1804	3250	10/11/2001					280235.84	6127153.94	ADELAIDE			
6628-21218	9	32.69	8/11/2002	722	1310	8/11/2002			0.5	8/11/2002	279723.47	6127252.8	ADELAIDE	D2114	A133	CT 5182 601
6628-21333	3	16.9	26/05/2003	1362	2460	26/05/2003			1.51	26/05/2003	277468.25	6126956.96	ADELAIDE	F10794	A408	CT 5206 454
6628-21560	4	23.48	12/11/2003	3868	6870	12/11/2003			1.88	12/11/2003	278268.41	6125416.29	ADELAIDE	D3703	A156	CT 5252 70
6628-21563	4	29.71	8/09/2003	1166	2110	8/09/2003			0.44	8/09/2003	278957.8	6126791.51	ADELAIDE	D4646	A43	CT 5296 530
6628-21576	4	15.91	11/12/2003	1468	2650	12/12/2003			1	11/12/2003	277448.61	6126863.58	ADELAIDE	D4336	A243	CT 5646 612
6628-21577	17	39.65	26/11/2003	788	1430	26/11/2003			1	26/11/2003	280780.1	6126746.26	ADELAIDE	D2855	A17	CT 5227 465
6628-21611	18	38.43	22/01/2004	821	1490	22/01/2004			0.3	22/01/2004	280769.06	6126738.23	ADELAIDE	D2855	A16	CT 5611 288
6628-21871	10	41.24	19/07/2004	712	1293	13/08/2004			0.95	13/08/2004	280392.75	6126264.55	ADELAIDE	D3176	A557	CT 5108 861
0020-510/I												6127599.55		D3158		
6628-22530	4.8	23.53									278554.74	012/399.33	ADELAIDE	D2120	A35	CT 5325 352

Unit_No	Drillhole Class	Aquifer	Origir	nal Drill	Maxim	num Drill	Last	Open	Permit No.	Cased To	Casing Diameter	Purpose	Lastest	Status	
			Depth	Date	Depth	Date	Depth	Date					Status	Date	DTW
6627-14193	Water Well	Qpah	7	13/01/2010	7	13/01/2010	7	13/01/2010	185111	4	50	Irrigation			6.2
6627-14197	Water Well	Qpah	7	19/01/2010	7	19/01/2010	7	19/01/2010	185114	4	50	Irrigation			6.2
6628-14285	Water Well	Qpah	8.2	15/10/1988	8.2	15/10/1988	8.2	15/10/1988	21846	8.2	100	Irrigation	Operational		3.3
6628-21844	Water Well	Qpah	30	27/08/2004	30	27/08/2004	30	27/08/2004	62982	24	105	Irrigation			12.5
6628-21877	Water Well	Qpah	70.2	22/10/2004	70.2	22/10/2004	70.2	22/10/2004	65237	48	125	Irrigation			-0.7
6628-8189	Water Well	Qpah	18	23/10/1976	18	23/10/1976	18	23/10/1976	511	18	100	Irrigation	Operational		6.6
6628-17522	Water Well	Qpah	7	2/01/1996	7	2/01/1996	7	2/01/1996	36565	6	102	Recreational/Environmental			
6628-18372	Water Well	Qpah	27.5	28/04/1997	27.5	28/04/1997	27.5	28/04/1997	40585	27.5	100	Recreational/Environmental			8.5

Unit_No	Wa	ter Level			Salinity	У		рН		Yield	MGT Easting	MGA Northing	Hundred	Plan	Parcel	Title
	SWL	RSWL	Date	TDS	EC	Date	рН	Date	Yield	Date						
6627-14193	6.2		13/01/2010								277975.22	6123514.89	ADELAIDE			
6627-14197	6.2		19/01/2010								277898.06	6123577.94	ADELAIDE			
6628-14285	3.3	15.62	19/10/1988	3351	5971	19/10/1988	7.7	15/10/1988	1.2	15/10/1988	277058.34	6125756.73	ADELAIDE	F11643	A95	CT 5669 981
6628-21844	12.5	40.98	27/08/2004	814	1476	28/08/2004			2	27/08/2004	280589.16	6126966.55	ADELAIDE	D2898	A4	CT 5165 206
6628-21877	-0.7	69.64	22/10/2004	1895	3410	7/12/2009			1	22/10/2004	280114.75	6124352.53	ADELAIDE	F13422	A48	CT 6109 684
6628-8189	6.6	29.4	23/10/1976	1138	2060	23/10/1976	7	23/10/1976	1	23/10/1976	279120.35	6126933.75	ADELAIDE	D4646	A21	CT 5148 342
6628-17522				683	1240	2/01/1996	7.8	2/01/1996			276807.68	6126644.68	ADELAIDE	C20522		
6628-18372	8.5	31.64	28/04/1997	2251	4040	28/04/1997			1.25	28/04/1997	279647.53	6125344.74	ADELAIDE	D6248	A30	CT 5643 752

Appendix H Data Quality Indicators and Quality Assurance / Quality Control Review

H1. Data Quality Indicators

Specific data quality indicator (DQI) limits were adopted in accordance with the ASC NEPM (NEPC 2013) and standard JBS&G procedures for field sampling and handling.

To assess the usability of the data prior to making decisions, the data was assessed against appropriate DQIs established in relation to precision, accuracy, representativeness, comparability and completeness and sensitivity (PARCCS parameters), as follows:

- **Precision** measures the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percent Difference (RPD) of duplicate samples;
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory
 data that are generated during this study is a measure of the closeness of the analytical
 results obtained by a method to the 'true' value. Accuracy is assessed by reference to the
 analytical results of laboratory control samples, laboratory spikes and analyses against
 reference standards;
- Representativeness expresses the degree which sample data accurately and precisely represent a characteristic of a population or an environmental condition.
 Representativeness is achieved by collecting samples on a representative basis across the site, and by using an adequate number of sample locations to characterise the site to the required accuracy;
- Comparability expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples, ensuring analysing laboratories use consistent analysis techniques and reporting methods;
- **Completeness** is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is set at there being sufficient valid data generated during the study; and
- **Sensitivity** expresses the appropriateness of the chosen laboratory methods, including the limits of reporting.

The DQIs adopted as part of the assessment are summarised in **Table H.1**.

Table H.1: Summary of DQIs

Table H.1: Summary of DQIs Data Quality Indicators	Frequency & Data Quality Criteria
Precision	Frequency & Data Quality Criteria
Intra-laboratory Duplicate	 1 in 20 samples per sample type. RPD <30%.
Inter-laboratory Duplicate	 1 in 20 samples per sample type. RPD <30%.
Laboratory Internal Duplicates	1 in 20 samples.RPD <30%.
Accuracy	
Laboratory method blanks	1 per laboratory batch.All results <lor.< li=""></lor.<>
Laboratory control samples	1 per laboratory batch.Within laboratory prescribed recovery range.
Matrix spikes	1 per laboratory batch.Within laboratory prescribed recovery range.
Representativeness	
Sampling appropriate media and analytes	All sampling conducted in accordance with JBS&G procedures.
Rinsate samples (soil vapour	1 per day of soil vapour probe installation.
installation and groundwater sampling)	1 per day of groundwater sampling.All results <lor.< li=""></lor.<>
No potential ingress of ambient air into samples during transport (soil vapour sampling)	 No more than -5 inHg loss per sample during transit for Summa canister samples.
Leak test (soil vapour sampling)	 Shroud samples collected at 1 in 10. All samples <10% tracer (helium or isopropanol).
No potential cross contamination (soil vapour sampling)	Dedicated equipment used for collection of all samples.
Groundwater samples extracted and analysed within holding times	All groundwater samples extracted and analysed within holding times (7 days).
Trip spike samples (groundwater sampling)	 1 per batch of samples sent to the laboratory. Recovery between 70 % and 130 %.
Trip blank samples (groundwater sampling)	1 per batch of samples sent to the laboratory.All results <lor.< li=""></lor.<>
Comparability	
Standard operating procedures for sample collection and handling	All sampling conducted in accordance with JBS&G procedures.
Standard analytical methods used for all analyses	 Use of National Association of Testing Authorities (NATA) accredited laboratories.
	Standard analytical methods (details on the laboratory certificates of analysis).
Consistent field conditions, sampling procedure and	 All sampling completed on 30 March 2021. Sampling completed using consistent operating procedures.
laboratory analysis	 Sampling completed using consistent operating procedures. Laboratories NATA accredited for analysis.
Limits of reporting appropriate and	Maximum soil vapour sample LORs as follows:
consistent	• Tetrachloroethene: 10 µg/m³;
	• Trichloroethene: 10 µg/m³;
	• cis-1,2-dichloroethene: 10 μg/m³;
	• trans-1,2-dichloroethene: 10 µg/m³;
	• 1,1-dichloroethene: 10 μg/m³; and
	• Vinyl chloride: 5 μg/m ³ .
	Maximum groundwater sample LORs as follows:
	• Tetrachloroethene: 25 μg/L;
	• Trichloroethene: 5 µg/L;
	• cis-1,2-dichloroethene: 25 μg/L;
	 trans-1,2-dichloroethene: 25 μg/L; 1,1-dichloroethene: 25 μg/L; and
	 1,1-dichloroethene: 25 µg/L; and Vinyl chloride: 1 µg/L.
	····/· ······/· - ····

Data Quality Indicators	Frequency & Data Quality Criteria
Completeness	
Sample description and Chain of Custody (COC) documentation completed and appropriate	All COCs to be completed appropriately.
Satisfactory frequency and result for QC samples	QC samples to be collected at frequencies as outlined above.
Sensitivity	
Analytical methods and limits of recovery appropriate for media and adopted assessment criteria	 Use of NATA accredited laboratories. Maximum LORs as detailed above.

H2. Soil Vapour Quality Assurance / Quality Control Review

Table H.2 summarises the quality assurance (QA) and quality control (QC) activities undertaken to ensure integrity of the soil vapour data collected and conformance with the DQIs outlined in **Section H1**. Any departures from the DQIs are noted in **Table H.2**.

Table H.2: Soil Vapour QA/QC Program

QA/QC Item	Detail
QA	
Field Procedures	Field procedures were undertaken in accordance with the references in Section 3.1.1.
Decontamination of Equipment	The handauger was decontaminated prior to the commencement of drilling at each soil vapour probe location to minimise the potential for cross contamination. A rinsate sample was collected on the day of drilling in order to validate decontamination procedures.
	Dedicated soil vapour sampling equipment was used at each sampling location.
Laboratories used and NATA accreditation	Eurofins MGT (primary laboratory) and Envirolab (secondary laboratory for QC purposes) are NATA accredited for the analyses undertaken.
Sample Tracking	COC documentation was used for the transport of all samples to the laboratory and is included in Appendix J (along with the laboratory certificates of analysis).
Sample Preservation and Storage	Summa canisters were stored in laboratory supplied pelican cases and transported to the laboratory.
Data Transcription	Summary results tables are appended to this report, which were generated from laboratory supplied ESdat files, minimising the potential for transcription errors.
Laboratory Detection Limits	The LORs are presented in the soil vapour laboratory certificates of analysis (Appendix J) and included in the Summary Tables. The LORs outlined in the DQIs were achieved.
QC	THE ESTATE OF THE STATE OF THE
Rinsate Samples (Installation of Soil Vapour Probes)	One rinsate sample ('RB01') was collected on the day of groundwater well installation, as required by the DQIs. RB01 was collected by running deionised water over the clean hand auger head. This rinsate sampled was analysed for VOCs – all results were below the laboratory reporting limits, as required by the DQIs. The results of the rinsate sample are summarised in the Summary Tables, and are included in the laboratory certificates of analysis in Appendix J.
Certification of Summa Canisters	All Summa canisters were certified as clean by the primary laboratory (Eurofins MGT) prior to dispatch, noting the Summa canister analysed by Envirolab (the secondary laboratory) was a Eurofins MGT canister.
Integrity Testing – Helium Leak Test	All soil vapour probes passed the helium leak test, given the concentration reported in the soil vapour probe was below 10 % of that reported in the shroud, as required by the DQIs. This indicates adequate soil vapour probe construction / no significant damage. Helium leak test results are included in the Summary Tables .
Integrity Testing – Isopropanol Leak Test	One shroud sample (SHROUD01) was collected during the soil vapour monitoring event and analysed for isopropanol. An isopropanol concentration of 930,000 µg/m³ was reported in the shroud sample. PID measurements taken within

QA/QC Item	Detail
	the shroud during sampling indicate similar concentrations of VOCs during sampling
	at each location, noting the shroud sample was collected at SVP05.
	The concentration of isopropanol within the soil vapour samples was compared to
	the acceptable concentration outlined in the DQIs (10 % of that reported in the
	shroud sample; 93,000 μg/m³). All samples (both primary and QC samples)
	reported an isopropanol concentration below this acceptable concentration and
	hence passed the isopropanol leak test, indicating acceptable ingress of ambient air
	during sampling.
	Isopropanol leak test results are included in the Summary Tables .
Receipt Pressure of Samples	The pre-sampling pressure was -30 inHg for all canisters used in the SVME,
neceipe i ressure of sumples	indicating negligible loss of pressure between shipping from the laboratory to
	receipt for sampling. The post-sampling pressure was compared to the final
	laboratory receipt pressure, with total difference below -5 inHg for all Summa
	canisters, as required by the DQIs.
	The results indicate little loss of pressure and low potential for ambient air ingress
	during transit for all samples.
John Laborator Doublests Complete	Summa canister pressure is summarised in the Summary Tables .
Intra-Laboratory Duplicate Samples	One intra-laboratory duplicate sample pair was collected and analysed as part of the
	SVME for a total of five primary samples. This frequency is in accordance with the
	required frequency outlined in the DQIs. The following intra-laboratory duplicate
	sample was collected and analysed:
	'DUP01' was collected with primary sample 'SVP02'.
	The intra-laboratory duplicate sample pair was analysed for the chemicals of
	interest (CEs) and isopropanol. A total of seven RPD values were calculated – all
	RPD values were within the acceptable range (0 % to 30 %) outlined in the DQIs with
	the exception of isopropanol (57 %). The slightly elevated RPD reported for
	isopropanol is due to minor differences in the seal of the sample train for each
	sample, noting both samples passed the isopropanol leak test.
	The soil vapour intra-laboratory duplicate sample pair results and RPD values have
	been summarised in the Summary Tables . Laboratory certificates of analysis are
	included in Appendix J.
Inter-Laboratory Duplicate Samples	One inter-laboratory duplicate sample pair was collected and analysed as part of the
, , , , , , , , , , , , , , , , , , , ,	SVME for a total of five primary samples. This frequency is in accordance with the
	required frequency outlined in the DQIs. The following inter-laboratory duplicate
	sample was collected and analysed:
	'DUP02' was collected with primary sample 'SVP03'. ''DUP02' was collected with primary sample 'SVP
	The inter-laboratory duplicate sample pair was analysed for the chemicals of
	interest (CEs) and isopropanol. A total of seven RPD values were calculated – all
	RPD values were within the acceptable range (0 % to 30%) outlined in the DQIs with
	the exception of isopropanol (57 %). The slightly elevated RPD reported for
	isopropanol is due to minor differences in the seal of the sample train for each
	sample, noting both samples passed the isopropanol leak test.
	The soil vaneur inter laboratory dualisate complement and BBD value base
	The soil vapour inter-laboratory duplicate sample pair results and RPD values have
	been summarised in the Summary Tables . Laboratory certificates of analysis are
	included in Appendix J.
Laboratory Internal QC	Eurofins MGT (primary laboratory) and Envirolab (secondary laboratory for QC
	purposes) undertook internal QA procedures and internal QC testing, including
	laboratory blank samples (both laboratories), duplicate samples (Envirolab only) and
	spike samples (both laboratories). The following was noted:
	Laboratory blank samples – All results were below the laboratory reporting limits.
	Duplicate samples – The RPD values reported for all internal duplicate pairs within the acceptable range.
	Spike samples – The recoveries from the laboratory control spike samples were
	within the specified range for each chemical.
	within the specifica range for each elemical.

H3. Groundwater Quality Assurance / Quality Control Review

Table H3.1 summarises the QA/QC activities undertaken to ensure integrity of the groundwater data collected. The results indicate conformance with the specific QA/QC procedures.

Table H3.1: Groundwater QA/QC Program

QA/QC Item	Detail
QA	
Field Procedures	Field procedures were undertaken in accordance with relevant guidelines outlined in Section 3.3 .
Decontamination of Equipment	All sampling equipment (interface probe, low flow pump, water quality meter) was decontaminated prior to the start of groundwater sampling at GW3034b to minimise the potential for cross contamination. A rinsate sample was collected to validate decontamination procedures (rinsate samples are discussed further below). All low-density polyethylene (LDPE) tubing used for sampling of groundwater wells
	was dedicated to a specific well, noting this tubing was removed and disposed offsite on completion of groundwater sampling.
Laboratories used and NATA	Eurofins (primary laboratory) and Envirolab (secondary laboratory for QC purposes)
accreditation	are NATA accredited for the analyses undertaken.
Sample Tracking	COC documentation was used for the transport of all samples to the laboratory and is included in Appendix L (along with the laboratory certificates of analysis).
Sample Preservation and Storage	Samples were collected in laboratory supplied bottles with specific preservation for the contaminants of interest, and were kept in a chilled insulated box and transported to the laboratory.
Holding Times	Samples were analysed within specified holding times by both the primary and secondary laboratory.
Data Transcription	Summary results tables are attached to this report, which were generated from laboratory supplied ESdat files, minimising the potential for transcription errors.
Laboratory Limits of Reporting (LORs)	The LORs are presented in the groundwater laboratory certificates of analysis (Appendix L) and included in the Summary Tables. The LORs outlined in the DQIs were achieved with the exception of that for vinyl chloride, noting an elevated LOR was required due to the high concentrations of TCE reported. This is not considered to alter the outcomes of this investigation as the risk driver at the site is TCE. It is noted that vinyl chloride was reported below the LOR in soil vapour (the LOR outlined in the DQIs was achieved for soil vapour).
Rinsate Samples	One rinsate sample ('RB02') was collected on the day of groundwater sampling, as required by the DQIs. RB02 was collected by running deionised water through the clean low flow pump. This rinsate sampled was analysed for CEs – all results were below the laboratory reporting limits, as required by the DQIs. The results of the rinsate samples are summarised in the Summary Tables, and are included in the laboratory certificates of analysis in Appendix L.
Intra-laboratory Duplicate Samples	One intra-laboratory duplicate sample pair was collected and analysed as part of the groundwater sampling for a total of one primary samples. This frequency is in accordance with the required frequency outlined in the DQIs. The following intralaboratory duplicate sample was collected and analysed:
	• 'DUP01' was collected with primary sample 'GW3034b'. The intra-laboratory duplicate sample pair was analysed for the chemicals of interest (CEs). A total of six RPD values were calculated – all RPD values were within the acceptable range (0 % to 30 %) outlined in the DQIs. The groundwater intra-laboratory duplicate sample pair results and RPD values have been summarised in the Summary Tables. Laboratory certificates of analysis are included in Appendix L.

QA/QC Item	Detail
Inter-laboratory Split Samples	One inter-laboratory split sample pair was collected and analysed as part of the groundwater sampling for a total of one primary samples. This frequency is in accordance with the required frequency outlined in the DQIs. The following interlaboratory split sample was collected and analysed:
	• 'SPLIT01' was collected with primary sample 'GW3034b'.
	The inter-laboratory split sample pair was analysed for the chemicals of interest (CEs). A total of six RPD values were calculated – all RPD values were within the acceptable range (0 % to 30 %) outlined in the DQIs. The groundwater inter-laboratory split sample pair results and RPD values have been summarised in the Summary Tables. Laboratory certificates of analysis are included in Appendix L.
Transport Blank Sample	One trip blank sample ('TB01') was transported in the cool box to the laboratory
	along with the primary sample and other QC samples to ensure samples were not impacted during transport. The trip blank sample was analysed for CEs – all results were below the laboratory reporting limits, as required by the DQIs.
	The results of the trip blank sample are included summarised in the Summary Tables and included in the laboratory certificates of analysis in Appendix L .
Trip Spike Sample	One trip spike sample ('WSP7893'), pre-dosed with known concentrations of benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN) and TRH C_6 - C_{10} , was transported in the cool box to the laboratory along with the primary sample and other QC samples to assess the potential for loss of volatiles during transport. The trip spike sample was analysed for CEs — the recovery required by the DQIs was achieved for all chemicals analysed. It should be noted that dosing and analysis for BTEXN and TRH was completed in lieu of CEs due to laboratory protocols.
	The results of the trip spike sample are included summarised in the Summary Tables and included in the laboratory certificates of analysis in Appendix L .
Laboratory Internal QC	 Eurofins (primary laboratory) and Envirolab (secondary laboratory for QC purposes) undertook internal QA procedures and internal QC testing including laboratory blank sample analysis and laboratory spike sample analysis. The following was noted: Laboratory blank samples: All results were below the laboratory reporting limits. Spike samples: The recoveries from the laboratory control spike samples were within the specified range for each contaminant.

Appendix I	Bureau of Meteorology Daily Weather Observations – March 2021

Adelaide Airport, South Australia March 2021 Daily Weather Observations

Observations are made about 1 km east of the coast.

		Ten	nps	Dain	F	C	Max	wind g	ust			9a	am					3	om		
Date	Day	Min	Max	Rain	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Мо	13.6	25.7	0	7.0	11.4	SSE	50	12:50	18.8	58	7	ESE	13	1016.1	25.4	34	5		24	1015.0
2	Tu	13.0	25.1	0	12.6	8.1	ESE	44	02:26	15.5	44	7	ESE	15	1020.0	23.2	23	7	Е	11	1016.7
3	We	12.9	25.9	0	6.6	12.3	SE	41	18:52	16.3	45	1	W	7	1020.3	24.8	25	1	SE	22	1018.7
4	Th	10.3	24.2	0	7.6	12.0	SW	44	16:34	16.4	52	1		Calm	1020.4	21.9	49	0	WSW	26	1017.7
5	Fr	11.9	26.4	0	6.8	12.0	SW	48	15:25	18.6	65	1	W	4	1017.0	22.9	60	1	SW	35	1014.4
6	Sa	11.1	25.9	0	6.8	9.9	SE	37	23:58	17.0	51	6	NNW	6	1013.8	22.8	46	6	SSW	22	1011.3
7	Su	17.0	25.9	0	6.4	1.3	W	31	14:18	21.2	53	6		Calm	1008.8	23.7	57	7	W	15	1007.9
8	Мо	16.4	26.1	0.6	3.2	11.3	S	41	19:14	19.1	64	3		24	1012.8	26.0	34	1	SSE	24	1012.1
9	Tu	13.6	26.6	0	8.0	11.9	SE	39	16:08	17.6	59	1	ESE	19	1018.5	22.7	55	1	WSW	28	1017.2
10	We	14.8	26.0	0	7.0	3.6	SE	33	23:46	19.4	53	7	SE	7	1018.5	21.6	60	7	SW	17	1016.8
11	Th	14.4	24.5	3.2	3.0	10.3	SW	33	16:41	19.6	68	7		Calm	1017.5	23.3	57	2	WSW	24	1015.8
12	Fr	13.8	31.7	0	5.8	11.7	NNW	35	11:40	20.1	60	1		Calm	1015.0	31.3	26	1	NW	19	1011.6
13	Sa	18.3	20.3	1.6	5.6	5.0	SW	54	15:29	18.3	86	8	SSW	33	1014.0	19.6	49	5	SW	33	1017.3
14	Su	9.1	20.5	7.0	6.6	11.5	SW	43	16:35	14.7	59	1	SSE	11	1025.3	19.1	39	1	SW	30	1024.4
15	Мо	10.2	20.0	0	5.4	6.0	W	30	11:39	16.3	69	3	NNE	7	1026.9	19.3	69	7	WSW	15	1025.3
16	Tu	14.8	23.4	0	3.4	2.1	SW	28	14:42	18.8	71	7	ESE	13	1024.9	22.8	58	7	WSW	19	1022.0
17	We	12.7	24.5	0	3.4	11.3	SE	39	22:46	19.2	69	0	NNW	4	1021.6	23.2	64	1	WSW	28	1018.9
18	Th	18.2	29.6	0	6.6	11.3	SE	43	17:10	22.7	57	1		Calm	1022.0	24.5	63	2	SSW	19	1020.5
19	Fr	17.2	32.0	0	8.6	11.2	SE	50	18:35	24.7	42	2	E	15	1023.8	30.1	27	6	E	28	1020.4
20	Sa	19.4	32.5	0	9.4	11.0	E	52	14:16	25.7	42	1	NE	15	1022.0	31.9	22	4	ENE	33	1018.1
21	Su	19.1	29.4	0	11.4	10.7	SSW	39	16:46	24.7	41	1	NNE	19	1018.2	26.4	48	4	SSW	24	1015.6
22	Мо	15.9	26.7	0	8.4	11.2	SSW	35	15:44	21.5	61	2		Calm	1014.1	24.7	53	2	SW	24	1010.9
23	Tu	14.2	22.6	0	6.4	11.2	WSW	37	13:31	19.2	61	1	SW	7	1009.6	21.4	64	1	SW	30	1008.0
24	We	17.7	22.2	0	5.6	6.7	WSW	46	21:17	18.9	69	8	SW	26	1009.1	20.9	59	3	WSW	30	1009.0
25	Th	17.2	21.6	0.4	7.6	9.6	SW	39	02:02	18.1	61	3	SW	28	1012.2	20.9	50	4	SW	24	1012.5
26	Fr	12.7	22.5	0	4.0	1.8	WSW	31	21:59	16.0	68	7	NE	15	1012.9	20.8	55	6	NW	20	1010.6
27	Sa	15.9	20.8	2.8	3.4	7.2	W	39	02:14	18.3	60	5	SW	17	1015.0	19.7	52	3	SW	22	1015.6
28	Su	12.7	20.8	1.8	3.4	10.4	WSW	33	13:21	15.9	73	1	N	11	1021.6	19.7	61	3	SW	24	1020.9
29	Мо	11.0	22.5	0	5.0	10.9	SW	31	15:53	16.5	74	1		Calm	1025.6	21.5	57	1	SW	22	1024.2
30	Tu	12.0	24.0	0	6.6	10.4	SW	31	17:00	18.2	71	1		Calm	1026.6	21.9	61	7	SW	17	1024.7
31	We	12.2	24.8	0	3.6	10.9	SSW	28	14:49	19.3	59	1	ESE	7	1024.7	23.6	54	0	SW	20	1022.1
Statistic	s for Ma	rch 202	1			·	·							·						·	
	Mean	14.3	25.0		6.3	9.2				18.9	60	3		10	1018.3		49	3		23	1016.7
	Lowest	9.1	20.0		3.0	1.3				14.7	41	0		Calm	1008.8	19.1	22	0	Е	11	1007.9
	Highest	19.4	32.5	7.0	12.6	12.3	SW	54		25.7	86	8	SSW	33	1026.9	31.9	69	7	SW	35	1025.3
	Total			17.4	195.2	286.2															

Observations were drawn from Adelaide Airport (station 023034)

Some cloud observations are from automated equipment; these are somewhat different to those made by a human observer and may not appear every day.

IDCJDW5001.202103 Prepared at 13:02 UTC on 14 Apr 2021 Copyright © 2021 Bureau of Meteorology

Appendix J Soil Vapour Laboratory Certificates of Analysis and Chain of Custody Documentation

JBS & G Australia (SA) P/L 100 Hutt St Adelaide SA 5000

NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention: Kate Lough

Report 784189-TO
Project name MELROSE PARK

Project ID 60610

Received Date Mar 30, 2021

Client Sample ID			SVP01	SVP02	SVP03	SVP04
Sample Matrix			1L Summa Canister	1L Summa Canister	1L Summa Canister	1L Summa Canister
Eurofins Sample No.			T21-Ma56852	T21-Ma56853	T21-Ma56854	T21-Ma56855
Date Sampled			Mar 30, 2021	Mar 30, 2021	Mar 30, 2021	Mar 30, 2021
Receipt Vac./Pressure (inHg)			7.2	9.4	5.7	6.4
Final Pressure (psi)			15	15	15	15
Test/Reference	LOR	Unit				
Dilution Factor	0.1		2.6	2.8	2.4	2.5
US EPA Compendium Methods TO-14a/TO-15						
1.1-Dichloroethene	2	ug/m3	540	330	25	< 5
cis-1.2-Dichloroethene	2	ug/m3	< 5	< 6	< 5	< 5
Isopropanol	49	ug/m3	< 127	220	< 119	< 123
Tetrachloroethene	3.4	ug/m3	100	29	39	51
trans-1.2-Dichloroethene	2	ug/m3	< 5	< 6	< 5	< 5
Trichloroethene	2.7	ug/m3	7000	4800	8100	3100
Vinyl Chloride	1.3	ug/m3	< 3	< 4	< 3	< 3

Client Sample ID			SVP05	DUP01	SHROUD01
Sample Matrix			1L Summa Canister	1L Summa Canister	1L Summa Canister
Eurofins Sample No.			T21-Ma56856	T21-Ma56857	T21-Ma56859
Date Sampled			Mar 30, 2021	Mar 30, 2021	Mar 30, 2021
Receipt Vac./Pressure (inHg)			2.9	6.4	3.4
Final Pressure (psi)			15	15	15
Test/Reference	LOR	Unit			
	•	•			
Dilution Factor	0.1		2.2	2.5	530
US EPA Compendium Methods TO-14a/TO-15					
1.1-Dichloroethene	2	ug/m3	350	400	-
cis-1.2-Dichloroethene	2	ug/m3	21	< 5	-
Isopropanol	49	ug/m3	190	< 123	930000
Tetrachloroethene	3.4	ug/m3	320	36	-
trans-1.2-Dichloroethene	2	ug/m3	< 4	< 5	-
Trichloroethene	2.7	ug/m3	14000	5800	-
Vinyl Chloride	1.3	ug/m3	< 3	< 3	-

Report Number: 784189-TO

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeUS EPA Compendium Methods TO-14a/TO-15BrisbaneAirMar 31, 202130 Days

- Method: SOP #6 Analysis of Volatile Organic Compounds in Summa Polished Canisters EPA Method TO-15 And Modified EPA Method TO-14A

Report Number: 784189-TO

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175 16 Mars Road
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2:

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Apr 8, 2021

Kate Lough

5 Day

Mar 30, 2021 12:00 AM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

JBS & G Australia (SA) P/L

Address: 100 Hutt St Adelaide

SA 5000

SA 5000

Project Name: Project ID:

Company Name:

MELROSE PARK

60610

Order No.: Report #:

784189

Phone: 08 8431 7113 **Fax:** 08 8431 7115

Eurofins Analytical Services Manager: Michael Cassidy

		Sa	mple Detail			1.1-Dichloroethene	CANCELLED	cis-1.2-Dichloroethene	Dilution Factor	Final Pressure (psi)	Isopropanol	Receipt Vac./Pressure (in Hg)	Tetrachloroethene	trans-1.2-Dichloroethene	Trichloroethene	Vinyl Chloride
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271												
Sydı	ney Laboratory	- NATA Site # 1	8217													
Bris	bane Laborator	y - NATA Site #	20794													
Pert	h Laboratory - N	NATA Site # 237	736													
May	field Laboratory	/														
Exte	rnal Laboratory															
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	SVP01	Mar 30, 2021	9:05AM	1L Summa Canister	T21-Ma56852	Х		Х	х	Х	Х	Х	Х	Х	х	Х
2	SVP02	Mar 30, 2021	10:17AM	1L Summa Canister	T21-Ma56853	x		х	х	Х	Х	х	Х	Х	х	х
3	SVP03	Mar 30, 2021	9:45AM	1L Summa Canister	T21-Ma56854	x		Х	х	Х	Х	х	Х	Х	х	х
4	SVP04	Mar 30, 2021	7:40AM	1L Summa Canister	T21-Ma56855	Х		Х	х	Х	Х	Х	Х	Х	Х	Х
5	SVP05	Mar 30, 2021	8:26AM	1L Summa Canister	T21-Ma56856	Х		Х	х	Х	Х	Х	Х	Х	х	х
6	DUP01	Mar 30, 2021		1L Summa	T21-Ma56857	Х		Х	Х	Χ	Χ	Х	Χ	Χ	Х	Х

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Fax:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

JBS & G Australia (SA) P/L

Address: 100 Hutt St

Adelaide

SA 5000

Project Name:

Company Name:

MELROSE PARK

Project ID:

60610

Order No.: Received: Mar 30, 2021 12:00 AM

Report #: 784189 Due: Apr 8, 2021 Phone: 08 8431 7113 **Priority:** 5 Day 08 8431 7115 **Contact Name:** Kate Lough

Eurofins Analytical Services Manager: Michael Cassidy

		Sar	mple Detail			1.1-Dichloroethene	CANCELLED	cis-1.2-Dichloroethene	Dilution Factor	Final Pressure (psi)	Isopropanol	Receipt Vac./Pressure (in Hg)	Tetrachloroethene	trans-1.2-Dichloroethene	Trichloroethene	Vinyl Chloride
Mell	ourne Laborate	ory - NATA Site	# 1254 & 142	271												
		- NATA Site # 1														
Bris	bane Laborator	y - NATA Site #	20794													
Pert	h Laboratory - N	NATA Site # 237	36													
May	field Laboratory	<u> </u>														
Exte	rnal Laboratory	<u>'</u>														
				Canister												
7	DUP02	Mar 30, 2021		1L Summa Canister	T21-Ma56858		Х									
8	SHROUD01	Mar 30, 2021		1L Summa Canister	T21-Ma56859				X	х	X	х				
Test	Counts					6	1	6	7	7	7	7	6	6	6	6

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Dilutions are performed on samples due to the presence of high level target species or the presence of high level non-target species.
- 3. Results are uncorrected for surrogate recoveries
- 4. All QC limit exceedances and affected sample results are noted by flags. Each qualifying flag is defined below in section entitled 'Definition of Data Qualifying Flags' and additionally on individual sample results (where relevant).
- 5. "100% certification" is defined as evaluating the sampling system with humid zero air/N2 and humid calibration gases that pass through all active components of the sampling system. The system is "100% certified" if no significant additions or deletions (less than 0.2 ppbv each of target compounds) have occurred when challenged with the test gas stream.
- 6. The conversion equation from ppbv to g/m3 uses a temperature of 25 °C and an ambient sea level atmospheric pressure of 1 atmosphere (101.325 kPa) is assumed.
- 7. All canister samples are only analysed once temperature equilibrium with the laboratory has been achieved.
- 8. Safe Sampling Volume (SSV) calculated by taking two-thirds of the breakthrough volume (direct method) and Appendix 1 of Method T0-17.
- 9. Samples were analysed on an 'as received' basis.
- 10. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 11. This report replaces any interim results previously issued.

Definition of Data Qualifying Flags

Qualifiers may have been used on the data analysis sheets and indicates as follows:

- A01 Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
- A02 Estimated value
- A03 Exceeds instrument calibration range
- A04 Saturated peak.
- A05 Exceeds quality control limits.
- A06 Compound analysed for but not detected above the Limit of Reporting (LOR). See data page for project specific U-flag definition.
- A07 Non-detected compound associated with low bias in the CCV.
- A08 The identification is based on presumptive evidence.
- A09 SSV has been exceeded for this compound. It is likely that this compound has been underestimated
- A10 LORs cited do not take into account sample dilution due to canister pressurisation.
- A11 Naphthalene elutes outside the >C10-C12 range on the system used for sample analysis. As a result, >C10-C12 TRH value is equivalent to the modified F2 value.

Holding Times

Under conditions of normal usage for sampling ambient air, most Volatile Organic Compounds (VOCs) can be recovered from canisters near their original concentrations after storage times of up to thirty days. For thermal desorption tubes (TDT) samples should be refrigerated at <4°C in a clean environment during storage and analysed within 30 days of sample collection (within one week for limonene, carene, bis-chloromethyl ether and labile sulfur or nitrogen containing volatiles).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

ppbv: parts per billion by volume
ug/m3: micrograms per cubic metre

kPa: kilopascal

psig: pounds per square inch gauge

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
US EPA Compendium Methods TO-14a/TO-15					
1.1-Dichloroethene	ug/m3	< 2	2	Pass	
cis-1.2-Dichloroethene	ug/m3	< 2	2	Pass	
Isopropanol	ug/m3	< 49	49	Pass	
Tetrachloroethene	ug/m3	< 3.4	3.4	Pass	
trans-1.2-Dichloroethene	ug/m3	< 2	2	Pass	
Trichloroethene	ug/m3	< 2.7	2.7	Pass	
Vinyl Chloride	ug/m3	< 1.3	1.3	Pass	
LCS - % Recovery					
US EPA Compendium Methods TO-14a/TO-15					
1.1-Dichloroethene	%	115	70-130	Pass	
cis-1.2-Dichloroethene	%	115	70-130	Pass	
Isopropanol	%	73	70-130	Pass	
Tetrachloroethene	%	108	70-130	Pass	
trans-1.2-Dichloroethene	%	115	70-130	Pass	
Trichloroethene	%	100	70-130	Pass	
Vinyl Chloride	%	111	70-130	Pass	

Report Number: 784189-TO

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 N/A

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised by:

Emily Daos Analytical Services Manager
Laurence Hearn Senior Analyst-Air (QLD)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CHAIN OF CUSTODY DOCUMENTATION

CHARLET, COA				I																	
PROJECT: Melrosa Park				LABORATORY: Eurofins	Eurofins				LABOR	LABORATORY BATCH NO.	BATCH	NO.	78	784180	2						
SEND REPORT TO: JBS&G	and a			SEND INVOICE TO: IRSEG	TO: IRSEG	7,041			DAMP	DHOME OF THE	3										
DATA NEEDED BY: 5 day t/a	ay t/a			REPORT NEEDS	EPORT NEEDED BY: 5 day t/a				REPO	REPORT FORMAT: HARD:YES FAX: NO	MAT	AR	- 1.5	FAX: NO	~	E-MAII - YES	2			1	
PROJECT ID: 60610				QUOTE #:										1		i	Į.			1	
				RELINQUISHED BY:	ED 8Y:				1						RECEIVED BY						METHOD OF SHIPMENT: Oxaminh
NAME: Ashley Smith					DATE: 30/3/21				NAME	3	3	1	3		DATE	د	5	010	3		CONSIGNMENT NOTE NO
OF: JBS&G					TIME: PM				유	3					T MA	_	2 2	200	A		
NAME:					DATE:				NAME:						DATE		1	9			TRANSPORT CO, NAME
OF:					TIME				유						TIME						
P.O. NO.:			COMMENTS	COMMENTS/SPECIAL HANDLING/STORAGE OR DIPOSAL:	ING/STORAGE	OR DIPOSAL:							A A	SIS	ANALYSIS REQUIRED	g					
FOR LAB USE ONLY			Please forw	Please forward results to: labresults@jbsg.com.au, kdough@jbsg.com.au	ugh@jbsg.com.	2				-							_	-	-	_	
Yes	7	No								_	_						_	_	_	_	*Container Type and Preservative Codes: P = Neutral Plastic: N =
Broken	-	Intact																_			Nitric Acid Preserved; C = Sodium Hydroxide Preserved; J = Solvent Washed Acid Rinned Ian S = Solvent Washed Acid Rinned Class
COOLED TEMP.	•								5"												Bottler, VC = Hydrochloric Acid Preserved Vial; VS = Sulfunit Acid Preserved Vial; RS = Sulfunit Acid Preserved Glass Bottler, Z = Zinc Acetate Preserved Bottler; E = EDTA Preserved Bottler; ST = Sterile
П		SAMPLE DATA	DATA						Ether	_						_	_	_		_	Dome, & - Alisi.
000000000000000000000000000000000000000	5	5			COLLEC	COLLECTION TIME	CANISTE	CANISTER PRESSURE	ated	anol							_	_			
Space SAMILE ID	5	5	MAIKIX	UAIE	TIME ON	TIME OFF	PRE-SAMPLING	POST-SAMPLING	Chlorin	soprot										_	MOTES
SVP01	1L0104	1.3	SV	30/03/2021	9:05	9:15	-30	7	×	×		1				-	+	+	+	+	1991
SVP02	1L0044	0.9	SV	30/03/2021	10:17	10:26	-30	-10	×	×							-	+	+	+	**Chlorinated ethenes includes:
SVP03	11,0083	1.6	SV	30/03/2021	9:45	9:56	-30	ბ	×	×						Н	Н	Н	Н	Н	Tetrachloroethene
SALAN	ILU00/	0.0	y y	3003/2021	7:40	7:51	-30	7	×	×							-	H		_	Trichtoroethene
CUPIO	110762	2.1	S S	30/03/2021	8:26	8:36	-30	4	-	×								-			cis-1,2-dichloroethene
Dipo	110130		2 4	30/02/02/	- IO min S	-10 min sampling time	ی ہے		+	×	t	1			-	-	+	H	+	+	trans-1,2-dichloroethene
SHROUDO1	110107		2 5	PCUC/EU/UE	- to min or	-10 min sampling time	-50	, .	^	· >	t	1				+	+	+	+	╁	1,1-dichloroethene
						of the Company and	4	d		>	1					-	+	+	+	+	Vinyl chloride
																H	+	+	+	+	
									1	+	+					+	+	+	+	+	
										Н	П				И	Н	Н	Н	Н	Н	
										+	T					-	-	+	+	-	
									1	+	1				-	+	+	+	+	+	
									1	+	1				1	+	+	+	+	+	
										H					1	-	+	+	+	+	
										H					Ц	Н	Н	Н	Н	Н	
										+	t				1	+	-	+	+	+	
										+	1				1	+	+	+	+	+	
	L							TOTAL	4				,		,	-	+		+	\vdash	
								TOTAL	7	00	0	0	0	0	0	0	0	0	0	0	

JBS & G Australia (SA) P/L 100 Hutt St Adelaide SA 5000

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention: Kate Lough

Report 784279-W
Project name MELROSE PARK

Project ID 60610

Received Date Mar 31, 2021

Client Sample ID			RB01
Sample Matrix			Water
Eurofins Sample No.			M21-Ma57393
Date Sampled			Mar 26, 2021
Test/Reference	LOR	Unit	
Volatile Organics	LOIX	Offic	
1.1-Dichloroethane	0.001	mg/L	< 0.001
1.1-Dichloroethane	0.001	mg/L	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001
2-Butanone (MEK)	0.001	mg/L	< 0.001
2-Propanone (Acetone)	0.001	mg/L	< 0.001
4-Chlorotoluene	0.001	mg/L	< 0.001
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001
Allyl chloride	0.001	mg/L	< 0.001
Benzene	0.001	mg/L	< 0.001
Bromobenzene	0.001	mg/L	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001
Bromoform	0.001	mg/L	< 0.001
Bromomethane	0.001	mg/L	< 0.001
Carbon disulfide	0.001	mg/L	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001
Chloroethane	0.001	mg/L	< 0.001
Chloroform	0.005	mg/L	< 0.005
Chloromethane	0.001	mg/L	< 0.001
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001

Client Sample ID Sample Matrix			RB01 Water
Eurofins Sample No.			M21-Ma57393
Date Sampled			Mar 26, 2021
Test/Reference	LOR	Unit	
Volatile Organics			
Dibromochloromethane	0.001	mg/L	< 0.001
Dibromomethane	0.001	mg/L	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
Iodomethane	0.001	mg/L	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
Methylene Chloride	0.001	mg/L	< 0.001
o-Xylene	0.001	mg/L	< 0.001
Styrene	0.001	mg/L	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001
Trichloroethene	0.001	mg/L	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003
Total MAH*	0.003	mg/L	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005
4-Bromofluorobenzene (surr.)	1	%	109
Toluene-d8 (surr.)	1	%	105

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeVolatile OrganicsMelbourneApr 01, 20217 Days

- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices (USEPA 8260)

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Brisbane

Perth 1/21 Smallwood Place 2/91 Leach Highway Kewdale WA 6105 Murarrie QLD 4172 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Mar 31, 2021 3:00 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

JBS & G Australia (SA) P/L

Address: 100 Hutt St

Adelaide

SA 5000

Project Name:

Company Name:

MELROSE PARK

Project ID:

60610

Order No.: Received:

Report #: 784279 Due: Apr 9, 2021 Phone: 08 8431 7113 **Priority:** 5 Day 08 8431 7115 Fax: **Contact Name:** Kate Lough

Eurofins Analytical Services Manager: Michael Cassidy

		Sai	mple Detail			Volatile Organics	Moisture Set	SA Waste Screen
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х
Sydn	ey Laboratory	NATA Site # 1	8217					
Brisk	oane Laboratory	/ - NATA Site #	20794					
Perth	Laboratory - N	IATA Site # 237	36					
Mayf	ield Laboratory							
Exter	rnal Laboratory							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	SOIL01	Mar 26, 2021		Soil	M21-Ma57392		Χ	Х
2	RB01	Mar 26, 2021		Water	M21-Ma57393	Χ		
Test	Counts					1	1	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Volatile Organics					
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.4-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
2-Butanone (MEK)	mg/L	< 0.001	0.001	Pass	
2-Propanone (Acetone)	mg/L	< 0.001	0.001	Pass	
4-Chlorotoluene	mg/L	< 0.001	0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.001	0.001	Pass	
Allyl chloride	mg/L	< 0.001	0.001	Pass	
Benzene	mg/L	< 0.001	0.001	Pass	
Bromobenzene	mg/L	< 0.001	0.001	Pass	
Bromochloromethane	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon disulfide	mg/L	< 0.001	0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001	0.001	Pass	
	mg/L	< 0.001	0.001	Pass	
Chlorobenzene Chloroethane		< 0.001	0.001	Pass	
	mg/L	< 0.001			
Chloroform	mg/L		0.005	Pass	
Chloromethane	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001 < 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	1	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane District Land I'' and a second to a se	mg/L	< 0.001	0.001	Pass	
Dichlorodifluoromethane	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
lodomethane	mg/L	< 0.001	0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	-
Methylene Chloride	mg/L	< 0.001	0.001	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Styrene	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Trichloroethene	mg/L	< 0.001	0.001	Pass	

Test	Units	Result 1	Acceptance Pass Limits	
Trichlorofluoromethane	mg/L	< 0.001	0.001 Pass	
Vinyl chloride	mg/L	< 0.001	0.001 Pass	
Xylenes - Total*	mg/L	< 0.003	0.003 Pass	
LCS - % Recovery				
Volatile Organics				
1.1-Dichloroethene	%	119	70-130 Pass	
1.1.1-Trichloroethane	%	113	70-130 Pass	
1.2-Dichlorobenzene	%	97	70-130 Pass	
1.2-Dichloroethane	%	115	70-130 Pass	
Benzene	%	122	70-130 Pass	
Ethylbenzene	%	107	70-130 Pass	
m&p-Xylenes	%	102	70-130 Pass	
Toluene	%	105	70-130 Pass	
Trichloroethene	%	108	70-130 Pass	
Xylenes - Total*	%	105	70-130 Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised by:

Michael Cassidy Analytical Services Manager
Vivian Wang Senior Analyst-Volatile (VIC)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

JBS & G Australia (SA) P/L 100 Hutt St Adelaide SA 5000

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention: Kate Lough

Report 784279-S

Project name MELROSE PARK

Project ID 60610

Received Date Mar 31, 2021

Client Sample ID			SOIL01
Sample Matrix			Soil
Eurofins Sample No.			M21-Ma57392
Date Sampled			Mar 26, 2021
•	LOD	1.121	Wai 20, 2021
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM Frac		- 4	00
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50
Volatile Organics		1	
Tetrachloroethene	0.5	mg/kg	< 0.5
BTEX		T	
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	70
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5

Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Polycyclic Aromatic Hydrocarbons Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	0.5 0.5 0.5	Unit mg/kg	Soil M21-Ma57392 Mar 26, 2021
Date Sampled Test/Reference Polycyclic Aromatic Hydrocarbons Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene	0.5 0.5 0.5	mg/kg	
Date Sampled Test/Reference Polycyclic Aromatic Hydrocarbons Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene	0.5 0.5 0.5	mg/kg	Mar 26, 2021
Test/Reference Polycyclic Aromatic Hydrocarbons Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene	0.5 0.5 0.5	mg/kg	mar 20, 2021
Polycyclic Aromatic Hydrocarbons Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene	0.5 0.5 0.5	mg/kg	+
Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene	0.5 0.5		
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene	0.5 0.5		0.5
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene	0.5		< 0.5
Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene		mg/kg	< 0.5
Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene		mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene	0.5	mg/kg	< 0.5
Naphthalene Phenanthrene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
	0.5	mg/kg	< 0.5
Dyrana	0.5	mg/kg	< 0.5
·	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	65
p-Terphenyl-d14 (surr.)	1	%	56
Organochlorine Pesticides		1	
Chlordanes - Total	0.1	mg/kg	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05
a-BHC	0.05	mg/kg	< 0.05
Aldrin	0.05	mg/kg	< 0.05
b-BHC	0.05	mg/kg	< 0.05
d-BHC	0.05	mg/kg	< 0.05
Dieldrin	0.05	mg/kg	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05
Endrin	0.05	mg/kg	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05
Heptachlor	0.05	mg/kg	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05
Toxaphene	0.1	mg/kg	< 0.1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1
Dibutylchlorendate (surr.)	1	%	87
Tetrachloro-m-xylene (surr.)	1	%	57
Polychlorinated Biphenyls		/0	† 5,
Aroclor-1016	0.1	ma/ka	< 0.1
		mg/kg	< 0.1
Aroclor 1221	0.1	mg/kg	
Aroclor 1232	0.1	mg/kg	< 0.1
Aroclor 1242	0.1	mg/kg	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1
Aroclor-1260 Total PCB*	0.1	mg/kg mg/kg	< 0.1 < 0.1

Client Sample ID			SOIL01
Sample Matrix			Soil
Eurofins Sample No.			M21-Ma57392
Date Sampled			Mar 26, 2021
Test/Reference	LOR	Unit	
Polychlorinated Biphenyls	1	1	
Dibutylchlorendate (surr.)	1	%	87
Tetrachloro-m-xylene (surr.)	1	%	57
Phenols (Halogenated)		,,,	
2-Chlorophenol	0.5	mg/kg	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1
2.4.6-Trichlorophenol	1	mg/kg	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1
Pentachlorophenol	1	mg/kg	<1
Tetrachlorophenols - Total	10	mg/kg	< 10
Total Halogenated Phenol*	10	mg/kg	<1
Phenols (non-Halogenated)	1	i iiig/kg	` '
	20		- 20
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2
2-Nitrophenol	1.0	mg/kg	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4
4-Nitrophenol	5	mg/kg	< 5
Dinoseb	20	mg/kg	< 20
Phenol	0.5	mg/kg	< 0.5
Total Non-Halogenated Phenol*	20	mg/kg	< 20
Phenol-d6 (surr.)	1	%	50
Chromium (hexavalent)	1	mg/kg	< 1
Chromium (trivalent)	5	mg/kg	35
Cyanide (total)	5	mg/kg	< 5
% Moisture	1	%	11
Heavy Metals		,,,	
Arsenic	2	mg/kg	11
Barium	10	mg/kg	120
Beryllium	2	mg/kg	< 2
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	35
Cobalt	5	mg/kg	19
Copper	5	mg/kg	41
Iron	20	mg/kg	26000
Lead	5	mg/kg	17
	5		220
Manganese		mg/kg	
Mercury Nickal	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	18
Silver	2	mg/kg	2.7
Zinc	5	mg/kg	33

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
SA Waste Screen			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Apr 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Volatile Organics	Melbourne	Apr 06, 2021	7 Days
- Method: USEPA 8260 - MGT 350A Volatile Organics by GCMS			
BTEX	Melbourne	Apr 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Apr 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Apr 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Apr 06, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Melbourne	Apr 06, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)			
Polychlorinated Biphenyls	Melbourne	Apr 06, 2021	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8082)			
Phenols (Halogenated)	Melbourne	Apr 06, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (non-Halogenated)	Melbourne	Apr 06, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Chromium (hexavalent)	Melbourne	Apr 06, 2021	28 Days
- Method: APHA 3500-Cr Hexavalent Chromium- (Extraction:- USEPA3060)			
Cyanide (total)	Melbourne	Apr 06, 2021	14 Days
- Method: LTM-INO-4020 Total Free WAD Cyanide by CFA			
SA Waste Metals : Metals M14SA	Melbourne	Apr 06, 2021	28 Days
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
% Moisture	Melbourne	Mar 31, 2021	14 Days

⁻ Method: LTM-GEN-7080 Moisture

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: JBS & G Australia (SA) P/L

Address: 100 Hutt St

Adelaide SA 5000

Project Name:

MELROSE PARK

Project ID:

60610

Order No.: Report #:

784279

Brisbane

1/21 Smallwood Place

Murarrie QLD 4172

Phone: 08 8431 7113 08 8431 7115 Fax:

Received: Mar 31, 2021 3:00 PM

Due: Apr 9, 2021 **Priority:** 5 Day **Contact Name:** Kate Lough

Eurofins Analytical Services Manager: Michael Cassidy

		Sai	mple Detail			Volatile Organics	Moisture Set	SA Waste Screen
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	.71		Х	Х	Х
	ey Laboratory							
Brisk	pane Laboratory	y - NATA Site #	20794					
Perth	n Laboratory - N	IATA Site # 237	36					
Mayf	ield Laboratory	•						
Exte	rnal Laboratory							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	SOIL01	Mar 26, 2021		Soil	M21-Ma57392		Χ	Х
2	RB01	Mar 26, 2021		Water	M21-Ma57393	Χ		
Test	Counts					1	1	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	ons				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
Volatile Organics					
Tetrachloroethene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ons				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	1 3 3				
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	g,g	, 0.0			
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
0-0110	i ilig/kg	< 0.00	0.03	гаъъ	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor		< 0.05	0.05	Pass	
•	mg/kg				
Toxaphene	mg/kg	< 0.1	0.1	Pass	
Method Blank		T T		Ι	-
Polychlorinated Biphenyls				_	-
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	-
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Phenols (Halogenated)					
2-Chlorophenol	mg/kg	< 0.5	0.5	Pass	
2.4-Dichlorophenol	mg/kg	< 0.5	0.5	Pass	
2.4.5-Trichlorophenol	mg/kg	<1	1	Pass	
2.4.6-Trichlorophenol	mg/kg	<1	1	Pass	
2.6-Dichlorophenol	mg/kg	< 0.5	0.5	Pass	
4-Chloro-3-methylphenol	mg/kg	< 1	1	Pass	
Pentachlorophenol	mg/kg	< 1	1	Pass	
Tetrachlorophenols - Total		< 10	10	Pass	
	mg/kg	< 10	10	Fass	
Method Blank					
Phenols (non-Halogenated)		20		_	
2-Cyclohexyl-4.6-dinitrophenol	mg/kg	< 20	20	Pass	
2-Methyl-4.6-dinitrophenol	mg/kg	< 5	5	Pass	
2-Methylphenol (o-Cresol)	mg/kg	< 0.2	0.2	Pass	
2-Nitrophenol	mg/kg	< 1	1.0	Pass	
2.4-Dimethylphenol	mg/kg	< 0.5	0.5	Pass	
2.4-Dinitrophenol	mg/kg	< 5	5	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 0.4	0.4	Pass	
4-Nitrophenol	mg/kg	< 5	5	Pass	
Dinoseb	mg/kg	< 20	20	Pass	
Phenol	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Chromium (hexavalent)	mg/kg	< 1	1	Pass	
Cyanide (total)	mg/kg	< 5	5	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Barium	mg/kg	< 10	10	Pass	
Beryllium	mg/kg	< 2	2	Pass	
Cadmium		< 0.4	0.4	Pass	
Caumum	mg/kg	< 0.4	0.4	rass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Chromium	mg/kg	< 5	5	Pass	
Cobalt	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Iron	mg/kg	< 20	20	Pass	
Lead	mg/kg	< 5	5	Pass	
Manganese	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Silver	mg/kg	< 2	2	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery				•	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	113	70-130	Pass	
TRH C10-C14	%	113	70-130	Pass	
LCS - % Recovery	1.0		10.700	1 3.00	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	96	70-130	Pass	
Acenaphthylene	%	113	70-130	Pass	
Anthracene	%	86	70-130	Pass	
Benz(a)anthracene	%	102	70-130	Pass	
Benzo(a)pyrene	%	83	70-130	Pass	
Benzo(b&j)fluoranthene	%	81	70-130	Pass	
Benzo(g.h.i)perylene	%	73	70-130	Pass	
Benzo(k)fluoranthene	%	82	70-130	Pass	
Chrysene	%	92	70-130	Pass	
Dibenz(a.h)anthracene	%	88	70-130	Pass	
Fluoranthene	%	87	70-130	Pass	
Fluorene	%	108	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	85	70-130	Pass	
Naphthalene	%	91	70-130	Pass	
Phenanthrene	%	93	70-130	Pass	
Pyrene	%	91	70-130	Pass	
LCS - % Recovery	/0] 91]		Fass	
Organochlorine Pesticides		T T		T T	
Chlordanes - Total	%	91	70-130	Pass	
4.4'-DDD	%	98	70-130	Pass	
4.4'-DDE	%	108	70-130	Pass	
b-BHC Endosulfan I	%	97 104	70-130 70-130	Pass Pass	
Endosulfan II	%	89	70-130	Pass	
Endosulfan sulphate	%	88	70-130	Pass	
Endrin Endrin ketona	%	112	70-130	Pass	
Endrin ketone	%	96	70-130	Pass	
Heptachlor	%	92	70-130	Pass	
Hexachlorobenzene Mathematika	%	95	70-130	Pass	
Methoxychlor	%	85	70-130	Pass	
LCS - % Recovery	T	1.5-			
Chromium (hexavalent)	%	107	70-130	Pass	-
Cyanide (total)	%	91	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	M21-Ap05508	NCP	%	88	70-130	Pass	
TRH C10-C14	M21-Ap02705	NCP	%	98	70-130	Pass	
Spike - % Recovery							
ВТЕХ				Result 1			
Benzene	M21-Ap05508	NCP	%	82	70-130	Pass	
Toluene	M21-Ap05508	NCP	%	82	70-130	Pass	
Ethylbenzene	M21-Ap05508	NCP	%	79	70-130	Pass	
m&p-Xylenes	M21-Ap05508	NCP	%	90	70-130	Pass	
o-Xylene	M21-Ap05508	NCP	%	86	70-130	Pass	
Xylenes - Total*	M21-Ap05508	NCP	%	89	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1			
Naphthalene	M21-Ap05508	NCP	%	80	70-130	Pass	
TRH C6-C10	M21-Ap05508	NCP	%	86	70-130	Pass	
TRH >C10-C16	M21-Ap02705	NCP	%	122	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbon	s			Result 1			
Acenaphthene	M21-Ap05370	NCP	%	119	70-130	Pass	
Acenaphthylene	M21-Ap05370	NCP	%	102	70-130	Pass	
Anthracene	M21-Ap05370	NCP	%	101	70-130	Pass	
Benz(a)anthracene	M21-Ap05370	NCP	%	90	70-130	Pass	
Benzo(a)pyrene	M21-Ap05370	NCP	%	102	70-130	Pass	
Benzo(b&j)fluoranthene	M21-Ap05370	NCP	%	90	70-130	Pass	
Benzo(g.h.i)perylene	M21-Ap05370	NCP	%	84	70-130	Pass	
Benzo(k)fluoranthene	M21-Ap05370	NCP	%	129	70-130	Pass	
Chrysene	M21-Ap05370	NCP	%	93	70-130	Pass	
Dibenz(a.h)anthracene	M21-Ap05370	NCP	%	78	70-130	Pass	
Fluoranthene	M21-Ap05370	NCP	%	105	70-130	Pass	
Fluorene	M21-Ap05370	NCP	%	121	70-130	Pass	
Indeno(1.2.3-cd)pyrene	M21-Ap05370	NCP	%	74	70-130	Pass	
Naphthalene	M21-Ap05370	NCP	%	115	70-130	Pass	
Phenanthrene	M21-Ap05370	NCP	%	121	70-130	Pass	
Pyrene	M21-Ap05370	NCP	%	114	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	M21-Ap04728	NCP	%	104	70-130	Pass	
4.4'-DDD	M21-Ap04728	NCP	%	110	70-130	Pass	
4.4'-DDE	M21-Ap04728	NCP	%	75	70-130	Pass	
4.4'-DDT	M21-Ap04728	NCP	%	71	70-130	Pass	
a-BHC	M21-Ap04728	NCP	%	81	70-130	Pass	
Aldrin	M21-Ap04728	NCP	%	100	70-130	Pass	
b-BHC	M21-Ap04728	NCP	%	102	70-130	Pass	
d-BHC	M21-Ap04728	NCP	%	74	70-130	Pass	
Dieldrin	M21-Ap04728	NCP	%	101	70-130	Pass	
Endosulfan I	M21-Ap04728	NCP	%	77	70-130	Pass	
Endosulfan II	M21-Ap04728	NCP	%	94	70-130	Pass	
Endosulfan sulphate	M21-Ap04728	NCP	%	77	70-130	Pass	
Endrin	M21-Ap04728	NCP	%	110	70-130	Pass	
Endrin aldehyde	M21-Ap04728	NCP	%	82	70-130	Pass	
Endrin ketone	M21-Ap04728	NCP	%	82	70-130	Pass	
g-BHC (Lindane)	M21-Ap04728	NCP	%	97	70-130	Pass	
Heptachlor	M21-Ap04728	NCP	%	82	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Heptachlor epoxide	M21-Ap04728	NCP	%	109			70-130	Pass	
Hexachlorobenzene	M21-Ap04728	NCP	%	102			70-130	Pass	
Methoxychlor	M21-Ap04728	NCP	%	83			70-130	Pass	
Spike - % Recovery									
Phenols (Halogenated)				Result 1					
2-Chlorophenol	M21-Ap05370	NCP	%	115			30-130	Pass	
2.4-Dichlorophenol	M21-Ap05370	NCP	%	117			30-130	Pass	
2.4.5-Trichlorophenol	M21-Ap05370	NCP	%	89			30-130	Pass	
2.4.6-Trichlorophenol	M21-Ap05370	NCP	%	115			30-130	Pass	
2.6-Dichlorophenol	M21-Ap05370	NCP	%	118			30-130	Pass	
4-Chloro-3-methylphenol	M21-Ap05370	NCP	%	108			30-130	Pass	
Pentachlorophenol	M21-Ap05370	NCP	%	36			30-130	Pass	
Tetrachlorophenols - Total	M21-Ap05370	NCP	%	65			30-130	Pass	
Spike - % Recovery									
Phenols (non-Halogenated)				Result 1					
2-Methylphenol (o-Cresol)	M21-Ap05370	NCP	%	100			30-130	Pass	
2-Nitrophenol	M21-Ap05370	NCP	%	93			30-130	Pass	
2.4-Dimethylphenol	M21-Ap05370	NCP	%	91			30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	M21-Ap05370	NCP	%	122			30-130	Pass	
4-Nitrophenol	M21-Ap05370	NCP	%	104			30-130	Pass	
Phenol	M21-Ap05370	NCP	%	115			30-130	Pass	
Spike - % Recovery	101217400070	1101	70	1.10			00 100	1 466	
Heavy Metals				Result 1					
Arsenic	M21-Ap00024	NCP	%	96			75-125	Pass	
Barium	M21-Ap00024	NCP	%	93			75-125	Pass	
Beryllium	M21-Ap00024	NCP	%	92			75-125	Pass	
Cadmium	M21-Ap00024	NCP	%	94			75-125	Pass	
Chromium	M21-Ap00024	NCP	%	87			75-125	Pass	
Cobalt	M21-Ap00024	NCP	%	112			75-125	Pass	
Copper	M21-Ap00024	NCP	%	109			75-125	Pass	
Lead	M21-Ap00024	NCP	%	97			75-125	Pass	
Manganese	M21-Ap00024	NCP	%	98			75-125	Pass	
Mercury	M21-Ap00024	NCP	%	105			75-125	Pass	
Nickel	<u> </u>	NCP					75-125 75-125		
	M21-Ap00024	NCP	%	105 96			75-125 75-125	Pass	
Silver	M21-Ap00024	t						Pass	000
Zinc	M21-Ap00024	NCP	%	69			75-125	Fail	Q08
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	1		Result 1	Result 2	RPD		ļ	
TRH C6-C9	M21-Ap08310	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	B21-Ap01964	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	B21-Ap01964	NCP	mg/kg	99	130	23	30%	Pass	
TRH C29-C36	B21-Ap01964	NCP	mg/kg	150	180	18	30%	Pass	
Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
Tetrachloroethene	M21-Ap05370	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
втех				Result 1	Result 2	RPD			
Benzene	M21-Ap08310	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M21-Ap08310	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M21-Ap08310	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M21-Ap08310	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
	1		<u> </u>	+					
o-Xylene	M21-Ap08310	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	!

Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M21-Ap08310	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M21-Ap08310	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	B21-Ap01964	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	B21-Ap01964	NCP	mg/kg	220	270	20	30%	Pass	
TRH >C34-C40	B21-Ap01964	NCP	mg/kg	< 100	< 100	<u></u> <1	30%	Pass	
Duplicate				1 100	1.00		3373	1 430	
Polycyclic Aromatic Hydrocarbons	 S			Result 1	Result 2	RPD			
Acenaphthene	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<u><1</u>	30%	Pass	
Fluoranthene		NCP		< 0.5	< 0.5	<u><1</u> <1	30%	Pass	
Fluorantnene Fluorene	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1 <1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1 <1	30%	Pass	
\ ///	M21-Ap05369		mg/kg						
Naphthalene Phenanthrene	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate Destinite				D. audi 4	D 11 0	DDD			
Organochlorine Pesticides	M04 A=05000	NOD		Result 1	Result 2	RPD	200/	Dana	
Chlordanes - Total	M21-Ap05369	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M21-Ap05369	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
Phenols (Halogenated)	1		1	Result 1	Result 2	RPD			
2-Chlorophenol	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dichlorophenol	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	M21-Ap05369	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	M21-Ap05369	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
2.6-Dichlorophenol	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chloro-3-methylphenol	M21-Ap05369	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Pentachlorophenol	M21-Ap05369	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Tetrachlorophenols - Total	M21-Ap05369	NCP	mg/kg	< 10	< 10	<1	30%	Pass	

Duplicate									
Phenols (non-Halogenated)				Result 1	Result 2	RPD			
2-Cyclohexyl-4.6-dinitrophenol	M21-Ap05369	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	M21-Ap05369	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	M21-Ap05369	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
2-Nitrophenol	M21-Ap05369	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4-Dimethylphenol	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dinitrophenol	M21-Ap05369	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	M21-Ap05369	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
4-Nitrophenol	M21-Ap05369	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Dinoseb	M21-Ap05369	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Phenol	M21-Ap05369	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Cyanide (total)	M21-Ap02149	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
% Moisture	B21-Ma57227	NCP	%	10	9.8	6.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M21-Ap02488	NCP	mg/kg	11	4.8	79	30%	Fail	Q15
Barium	M21-Ap02488	NCP	mg/kg	17	23	29	30%	Pass	
Beryllium	M21-Ap02488	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	M21-Ap02488	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M21-Ap02488	NCP	mg/kg	60	50	18	30%	Pass	
Cobalt	M21-Ap02488	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	M21-Ap02488	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Iron	M21-Ap02309	NCP	mg/kg	31000	31000	2.0	30%	Pass	
Lead	M21-Ap02488	NCP	mg/kg	11	14	26	30%	Pass	
Manganese	M21-Ap02488	NCP	mg/kg	16	17	8.0	30%	Pass	
Mercury	M21-Ap02488	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M21-Ap02488	NCP	mg/kg	7.4	8.2	10	30%	Pass	
Silver	M21-Ap02488	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Zinc	M21-Ap02488	NCP	mg/kg	6.7	6.5	4.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference. Q08

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Michael Cassidy Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC) Joseph Edouard Senior Analyst-Organic (VIC) Scott Beddoes Senior Analyst-Inorganic (VIC) Vivian Wang Senior Analyst-Volatile (VIC)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

JBS&G (Australia) Pty Ltd CHAIN OF CUSTODY DOCUMENTATION

Adelaide 38 Dequeteville Tce KENT TOWN SA 5067 T: +61 8 8451 7113 · F: +61 8 8431 7115 ACN 100 220 479 · ABN 62 100 220 479

CLIENT: EPA		LABORATORY: MGT	RY; MGT		LABORATORY BATCH NO.:	BATCH NO.:			
SITE/PROJECT NAME: Melrose Park		COC Refere	COC Reference #: 60610_1 Install		SAMPLERS: HF	4			
SEND REPORT TO: JBS&G Australia Pty Ltd		SEND INVO	SEND INVOICE TO: JBS&G Australia Pty Ltd		PHONE: 08 84;	PHONE: 08 8431 7113 FAX: 08 8431 7115	7115		
DATA NEEDED BY: 5 day Va		REPORT NE	REPORT NEEDED BY: 5 day t/a		REPORT FOR	REPORT FORMAT: HARD; NO FAX: NO E-MAIL: YES	X: NO E-MAIL: YES		
SITE/PROJECT NUMBER: 60610		QUOTE #:			JBS&G OFFICE	JBS&G OFFICE TO SEND RESULTS: South Australia	South Australia		
	RELING	RELINQUISHED BY:					RECEIVED BY		METHOD OF SHIPMENT: Overnight
NAME: Kate Lough		DATE: 31/3/21	17.71		NAME: Pa	Parenta	7	DATE: 3 675	CONSIGNMENT NOTE NO.
OF: JBS&G (Australia) Pty Ltd		TIME:			OF:	CON BROW	9	TIME 2003	
NAME:		DATE:			NAME:	-	\		TRANSPORT CO. NAME.
OF:		TIME:			G.			TIME:	
P.O. NO.:	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	DLING/STORA	GE OR DISPOSAL:			AN	ANALYSIS REQUIRED		
FOR LAB USE ONLY	Please forward results and invoice to:	invoice to:							*Container Type and Preservative Codes:
COOLER SEAL. [abre-	labresufts@jbsg.com.au, klough@jbsg.com.au	ongh@jbsg.co	om.au		(ι				P = Neutral Plastic; N = Nitric Acid Preserved; C =: Sodium Hydroxide Preserved; J = Solvent Washed Jar: S =: Solvent Washed
Yes					creer				Glass Bottle; VC = HCL Preserved Vial; PC = HCL Preserved
					S ətsi				Plastic; PS = Sulfuric Acid Preserved Plastic; BS = Sulfuric Acid Preserved Glass Bottle; Z = Zinc Acetate Preserved Bottle; ST
COULER LEMP: deg.C		-	A STATE OF THE STA						Sodium Thiosuplhate Preserved Plastic, E = EDTA Preserved
SAMPLE		\neg	TAINER DATA	ı	(S)				Bottles; ST = Sterile Bottle; O =: Other.
SAMPLEID	MATRIX DATE	TIME	_). pH field	_				'NOTES
71		-	I soil jar		×				
RB01 Water	r 26/03/2021	M W	2x VC	•	×				
					+				
		1							
		J. Carl							
				TOTAL	1 1	0 0 0 0	0 0 0 0	0 0 0 0 0	0
									0
						-	1000 TOO #		\$0. \$0.
							してのこ		7.5%
							0000	7	

Page 1 of 1

Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 265789

Client Details	
Client	JBS & G Australia Pty Ltd
Attention	A Smith
Address	100 Hutt St, ADELAIDE, SA, 5000

Sample Details		
Your Reference	60610 Melrose Park	
Number of Samples	1xCanister	
Date samples received	06/04/2021	
Date completed instructions received	06/04/2021	

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	13/04/2021	
Date of Issue	13/04/2021	
NATA Accreditation Number 2901. This document shall not be reproduced except in full.		
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

Results Approved By

Giovanni Agosti, Group Technical Manager

Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 265789 Revision No: R00

Client Reference: 60610 Melrose Park

TO15 Chlorinated in Cans ppbv		
Our Reference		265789-1
Your Reference	UNITS	DUP02
Date Sampled		30/03/2021
Type of sample		Air
Air Kit Security No.		1L0132
Vacuum before Shipment	Hg"	[NT]
Vacuum before Analysis	Hg"	-8
Date prepared	-	08/04/2021
Date analysed	-	08/04/2021
Vinyl chloride	ppbv	<2
1,1-Dichloroethene	ppbv	5.6
Trichloroethene	ppbv	1,300
trans-1,2-dichloroethene	ppbv	<3
cis-1,2-Dichloroethene	ppbv	<3
Tetrachloroethene	ppbv	5
Isopropyl Alcohol	ppbv	110
Surrogate-Bromochloromethane	% rec	105
Surrogate -1,4-Difluorobenzene	% rec	101
Surrogate-Chlorobenzene-D5	% rec	98

Envirolab Reference: 265789

Revision No: R00

Client Reference: 60610 Melrose Park

TO15 chlorinated in Cans ug/m3		
Our Reference		265789-1
Your Reference	UNITS	DUP02
Date Sampled		30/03/2021
Type of sample		Air
Air Kit Security No.		1L0132
Vacuum before Shipment	Hg"	[NT]
Vacuum before Analysis	Hg"	-8
Date prepared	-	08/04/2021
Date analysed	-	08/04/2021
Vinyl chloride	μg/m³	<4
1,1-Dichloroethene	μg/m³	22
Trichloroethene	μg/m³	7,200
trans-1,2-dichloroethene	μg/m³	<10
cis-1,2-Dichloroethene	μg/m³	<10
Tetrachloroethene	μg/m³	30
Isopropyl Alcohol	μg/m³	280
Surrogate-Bromochloromethane	% rec	105
Surrogate -1,4-Difluorobenzene	% rec	101
Surrogate-Chlorobenzene-D5	% rec	98

Envirolab Reference: 265789

Revision No: R00

Client Reference: 60610 Melrose Park

Method ID	Methodology Summary
TO15	USEPA TO15 - Analysis of VOC's in air using USEPA TO15 and in house method AT-002. Note, longer term stability of some oxygenated compounds is questionable where significant humidity is present.

Envirolab Reference: 265789 Page | 4 of 9

Revision No: R00

QUALITY CONT	ROL: TO15 (Chlorinate	ed in Cans ppbv			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Vacuum before Analysis	Hg"			[NT]	1	-8	-8	0	[NT]	
Date prepared	-			08/04/2021	1	08/04/2021	08/04/2021		08/04/2021	
Date analysed	-			08/04/2021	1	08/04/2021	08/04/2021		08/04/2021	
Vinyl chloride	ppbv	0.3	TO15	<0.3	1	<2	<2	0	[NT]	
1,1-Dichloroethene	ppbv	0.5	TO15	<0.5	1	5.6	5.4	4	[NT]	
Trichloroethene	ppbv	0.3	TO15	<0.3	1	1300	1300	0	[NT]	
trans-1,2-dichloroethene	ppbv	0.5	TO15	<0.5	1	<3	<3	0	[NT]	
cis-1,2-Dichloroethene	ppbv	0.5	TO15	<0.5	1	<3	<3	0	[NT]	
Tetrachloroethene	ppbv	0.5	TO15	<0.5	1	5	4	22	[NT]	
Isopropyl Alcohol	ppbv	5	TO15	<5	1	110	110	0	[NT]	
Surrogate-Bromochloromethane	% rec		TO15	109	1	105	104	1	104	
Surrogate -1,4-Difluorobenzene	% rec		TO15	106	1	101	99	2	100	
Surrogate-Chlorobenzene-D5	% rec		TO15	104	1	98	96	2	101	

QUALITY CONTR	ROL: TO15 c	hlorinate	d in Cans ug/m3			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Vacuum before Analysis	Hg"			[NT]	1	-8	-8	0	[NT]	
Date prepared	-			08/04/2021	1	08/04/2021	08/04/2021		[NT]	
Date analysed	-			08/04/2021	1	08/04/2021	08/04/2021		[NT]	
Vinyl chloride	μg/m³	0.8	TO15	<0.8	1	<4	<4	0	[NT]	
1,1-Dichloroethene	μg/m³	2.0	TO15	<2.0	1	22	22	0	[NT]	
Trichloroethene	μg/m³	1.6	TO15	<1.6	1	7200	7000	3	[NT]	
trans-1,2-dichloroethene	μg/m³	2.0	TO15	<2.0	1	<10	<10	0	[NT]	
cis-1,2-Dichloroethene	μg/m³	2.0	TO15	<2.0	1	<10	<10	0	[NT]	
Tetrachloroethene	μg/m³	3.4	TO15	<3.4	1	30	30	0	[NT]	
Isopropyl Alcohol	μg/m³	12	TO15	<12	1	280	280	0	[NT]	
Surrogate-Bromochloromethane	% rec		TO15	109	1	105	104	1	[NT]	
Surrogate -1,4-Difluorobenzene	% rec		TO15	106	1	101	99	2	[NT]	
Surrogate-Chlorobenzene-D5	% rec		TO15	104	1	98	96	2	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 265789

Revision No: R00

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 265789 Page | 8 of 9

Revision No:

R00

Report Comments

AIR_TO-15

PQL has been raised due to the high level of analytes present in the sample.

LCS has been run as Ozone Precursor standard; the recovery of LCS cannot be reported due to the fact they are not in the list of analytes requested. However, the non-reported analytes within the LCS had acceptable recoveries.

Envirolab Reference: 265789 Page | 9 of 9

Revision No: R00

C) JBS&G

CHAIN OF CUSTODY DOCUMENTATION

REPORT NEEDED BY: 5 day that	SAMPLERS: AS PHONE: 08 8431 7113 FAX: 08 8431 7115	COC Reference #: COC_60610_2_SVP	COC Reference #: COC_60610_2_SVP	COC
NAME Gentler BY NAME	REPORT	f: 5 day t/a	REPORT NEEDED BY:	REP
NAME			QUOTE #:	용
CANISTER PRESSURE CANI	HAM			62
PRE-SAMPLING POST-SAMPLING	Oc. S	E: 30/321	DAIE	
PRE-SAMPLING POST-SAMPLING CANSTER PRESSURE	NAME	E L	DATE	
PRE-SAMPLING POST-SAMPLING State Post-Sampling Post-	OF	4	TIME	
## PRE-SAMPLING CANISTER PRESSURE CANISTER PRESSURE 3.0		/STORAGE OR DIPOSAL:	SPECIAL HANDLING/ST	MTS/SPE
DATE TIME CN TIME OFF PRE-SAMPLING POST-SAMPLING SU0202021 17.40 7.51 3.30 3.7 % X 3000202021 17.40 17.51 3.50 3.50 3.50 3.50 3.50 3.50 3.7 % X 3000202021 17.40 17.51 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50		gjpsð-couran	nd results to: beg.com.au, idough@b	onward re ts@jbsg.
DATE TIME ON TIME OFF PRE-SAMPLING COLECTION TIME COLECTION TIME COLECTION TIME COLECTION TIME COLECTION TIME OFF PRE-SAMPLING CITIEST	,,souo			
COLLECTION TIME CANISTER PRESSURE CANIST	ERP			
9.05 9.15307 x x x	STER PRESSURE JNG POST-SAMPLING	CTION TIME		MATRIX
10:17 10:25 -30 -10	13 7	14.0	+	+
945 956 -30 -3 x X Tichachlorosthene 740 7;51 -30 -3 x X Tichachenethene 826 -30 -3 x X X Tichachenethene -10 mis sampling time -30 -3 x X X X -10 mis sampling time -30 -5 X X X X -10 mis sampling time -30 -5 X X X X	-10 X	+	+	AS AS
7-40 7:51 -30 -7	5 1	-	_	-
8.26 8.36 30 4 2 X X C C C C C C C C C C C C C C C C C	# £-		L	
-10 mis sampling time -30 -7 X X X	4			
-10 min sampling time -30 -1	-/ X	-10 min sampling time		-
-10 min semping time -30 OS-	- I-	~10 min sampling time	-	
Note B Time B Ti	9	~10 min sampling time		6
Job N. Job N. Time B. Time B. Timp. B.				+
Job N Job N Date B Time F Received to the second se				+
Date B Time F Teresive Teresiv				+
Time Family Control of the Family Control of				+
Tamp F Cock				+
Assert				+
TOTAL SECTION OF THE PROPERTY				+
				+
HTESTS.				-
				+
				H
TOTAL 7 8 0 0 0 0 0 0 0 0 0 0				-
sending of Dung	0	١,	MANISE	
(tec	60,	0	Schaling	0

30.14 PSIA Page of 1

pressurisation. Initial Passur is 11.29 PSIA (70"Hg), post supple pressur is

Appendix K Geotechnical Sample Laboratory Certificate of Analysis

SMS Geotechnical Pty. Ltd.

Unit 9/21 Beafield Road Para Hills West, South Australia 5096 Ph. (08) 8258 7498 www.smsgeotechnical.com.au

Report No: MAT:1-2106306

Issue No: 1

Material Test Report

JBS&G (VIC & SA) Pty Ltd Client:

38 Dequetteville Terrace, Kent Town SA 5067

Project No: SMS1.21186

Project: Geotechnical Testing Location:

Submitted Samples

Accredited for compliance with ISO/IEC 17025-Testing The results in this report relate only to the items/samples that were tested.

NATA Accredited Laboratory Number:19225

Approved Signatory: Simon Nelson (Laboratory Coordinator) Date of Issue:

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Sample ID 1-2106306 **Sample Location** Melrose Park

Material Description CLAY, brown

0.60m - 0.70m Submitted by client

Sampling Method **Specification**

Test Results Description Method Result Limits Specimen Height (mm)* 83.6 Specimen Diameter (mm)* 29.3 Specimen Bulk Density (t/m3)* 2.01 Specimen Dry Density (t/m3)* 1.67 Void Ratio (e)* 0.58 Degree of Saturation S(%)* 92.6 Porosity (n)* 0.37 Date Tested 29/03/2021 Moisture Content (%) AS 1289.2.1.1 20.5 **Date Tested** 29/03/2021 Avg Particle Density - passing 2.36mm (g/cm³) AS 1289.3.5.1 2.64 Temperature - passing 2.36mm (°C) 23 Avg Particle Density - retained 2.36mm (g/cm³) Temperature - retained 2.36mm (°C) Soil Particle Density (g/cm³) 2.64 **Date Tested** 31/03/2021

*Non NATA - Calculation only

^{*} NATA does not cover the performance of this service.

Appendix L Groundwater Laboratory Certificates of Analysis and Chain of Custody Documentation

Environment Testing

JBS & G Australia (SA) P/L 100 Hutt St Adelaide SA 5000

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention: Kate Lough

Report 784255-W

Project name MELROSE PARK

Project ID 60610

Received Date Mar 31, 2021

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			GW3034B Water M21-Ma57157 Mar 30, 2021	DUP01 Water M21-Ma57158 Mar 30, 2021	RB02 Water M21-Ma57160 Mar 30, 2021	TB01 Water M21-Ma57161 Mar 30, 2021
Test/Reference	LOR	Unit				
Halogenated Volatile Organics						
1.1-Dichloroethene	0.001	mg/L	0.11	0.13	< 0.001	< 0.001
cis-1.2-Dichloroethene	0.001	mg/L	< 0.025	< 0.025	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.025	< 0.025	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.025	< 0.025	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	1.2	1.4	< 0.001	< 0.001
Vinyl chloride	0.001	mg/L	< 0.025	< 0.025	< 0.001	< 0.001
4-Bromofluorobenzene (surr.)	1	%	98	106	105	105
Toluene-d8 (surr.)	1	%	90	100	101	102

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			WSP7893 Water M21-Ma57162 Mar 30, 2021
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons			
Naphthalene	1	%	80
TRH C6-C10	1	%	73
TRH C6-C9	1	%	74
BTEX			
Benzene	1	%	94
Ethylbenzene	1	%	74
m&p-Xylenes	1	%	79
o-Xylene	1	%	70
Toluene	1	%	87
Xylenes - Total	1	%	73
4-Bromofluorobenzene (surr.)	1	%	100

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeHalogenated Volatile OrganicsMelbourneMar 31, 20217 Days

- Method: USEPA 8260 MGT 350A Halogenated Volatile Organics

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Perth 1/21 Smallwood Place 2/91 Leach Highway Kewdale WA 6105 Murarrie QLD 4172 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Apr 9, 2021

Kate Lough

5 Day

Mar 31, 2021 10:13 AM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: JBS & G Australia (SA) P/L

Address: 100 Hutt St Adelaide

SA 5000

Project Name:

MELROSE PARK

Project ID:

60610

Order No.: Report #:

784255

Brisbane

Phone: 08 8431 7113 08 8431 7115 Fax:

Eurofins Analytical Services Manager: Michael Cassidy

		Sai	mple Detail			CANCELLED	Halogenated Volatile Organics	BTEXN and Volatile TRH
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х
Sydr	ney Laboratory	- NATA Site # 1	8217					
Brist	oane Laborator	y - NATA Site #	20794					
Pertl	n Laboratory - N	IATA Site # 237	36					
	ield Laboratory							
Exte	rnal Laboratory	, 1 1			1			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	GW3034B	Mar 30, 2021		Water	M21-Ma57157		Х	
2	DUP01	Mar 30, 2021		Water	M21-Ma57158		Х	
3	SPLIT01	Mar 30, 2021		Water	M21-Ma57159	Х		
4	RB02	Mar 30, 2021		Water	M21-Ma57160		Х	
5	TB01	Mar 30, 2021		Water	M21-Ma57161		Х	
6	WSP7893	Mar 30, 2021		Water	M21-Ma57162			Х
Test	Counts					1	4	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 784255-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Halogenated Volatile Organics					
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
Trichloroethene	mg/L	< 0.001	0.001	Pass	
Vinyl chloride	mg/L	< 0.001	0.001	Pass	
LCS - % Recovery					
Halogenated Volatile Organics					
1.1-Dichloroethene	%	125	70-130	Pass	
Trichloroethene	%	86	70-130	Pass	

Report Number: 784255-W

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Authorised by:

Emily Daos Analytical Services Manager
Vivian Wang Senior Analyst-Volatile (VIC)

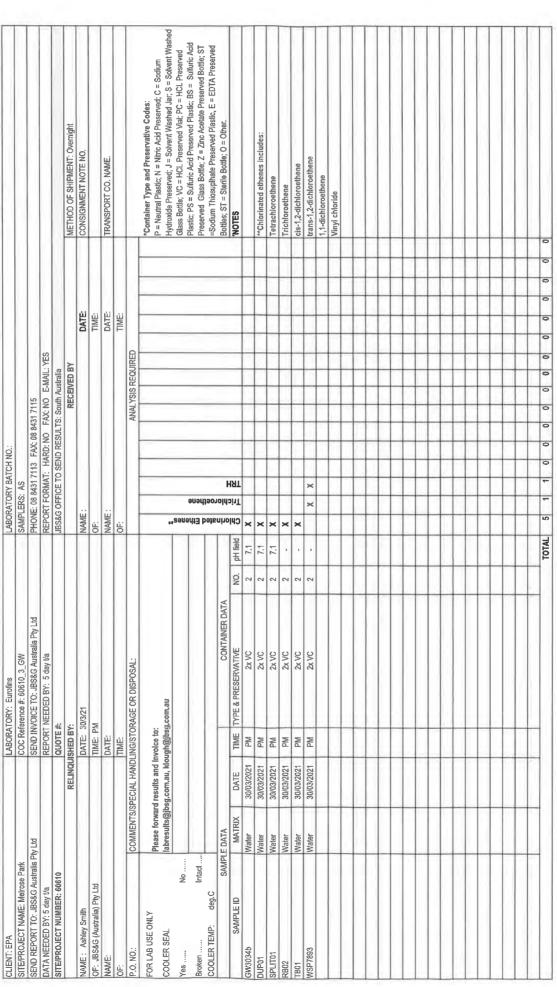
Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.


Report Number: 784255-W

Page 1 of 1

CHAIN OF CUSTODY DOCUMENTATION

JBS&G (Australia) Pty Ltd

38 Dequetteville Tce KENT TOWN SA 5067 T: + 61 8 8431 7115

Envirolab Services Pty Ltd

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 25139

Client Details	
Client	JBS & G Australia Pty Ltd
Attention	Kate Lough
Address	Level 2, 155 Queen Street, Melbourne, VIC, 3000

Sample Details	
Your Reference	Melrose Park - 60610
Number of Samples	1 Water
Date samples received	01/04/2021
Date completed instructions received	01/04/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	09/04/2021			
Date of Issue	09/04/2021			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISC	VIEC 17025 - Testing. Tests not covered by NATA are denoted with *			

TECHNICAL

Results Approved By

Chris De Luca, Operations Manager

Authorised By

Pamela Adams, Laboratory Manager

VOCs in water		
Our Reference		25139-1
Your Reference	UNITS	SPLIT01
Date Sampled		30/03/2021
Type of sample		Water
Date extracted	-	07/04/2021
Date analysed	-	07/04/2021
Dichlorodifluoromethane	μg/L	<500
Chloromethane	μg/L	<500
Vinyl Chloride	μg/L	<500
Bromomethane	μg/L	<500
Chloroethane	μg/L	<500
Trichlorofluoromethane	μg/L	<500
1,1-Dichloroethene	μg/L	93
Trans-1,2-dichloroethene	μg/L	<50
1,1-dichloroethane	μg/L	<50
Cis-1,2-dichloroethene	μg/L	<50
Bromochloromethane	μg/L	<50
Chloroform	μg/L	<50
2,2-dichloropropane	μg/L	<50
1,2-dichloroethane	μg/L	<50
1,1,1-trichloroethane	μg/L	<50
1,1-dichloropropene	μg/L	<50
Cyclohexane	μg/L	<50
Carbon tetrachloride	μg/L	<50
Benzene	μg/L	<50
Dibromomethane	μg/L	<50
1,2-dichloropropane	μg/L	<50
Trichloroethene	μg/L	1,200
Bromodichloromethane	μg/L	<50
trans-1,3-dichloropropene	μg/L	<50
cis-1,3-dichloropropene	μg/L	<50
1,1,2-trichloroethane	μg/L	<50
Toluene	μg/L	<50
1,3-dichloropropane	μg/L	<50
Dibromochloromethane	μg/L	<50
1,2-dibromoethane	μg/L	<50
Tetrachloroethene	μg/L	<50
1,1,1,2-tetrachloroethane	μg/L	<50
Chlorobenzene	μg/L	<50
Ethylbenzene	μg/L	<50

VOCs in water		
Our Reference		25139-1
Your Reference	UNITS	SPLIT01
Date Sampled		30/03/2021
Type of sample		Water
Bromoform	μg/L	<50
m+p-xylene	μg/L	<100
Styrene	μg/L	<50
1,1,2,2-tetrachloroethane	μg/L	<50
o-xylene	μg/L	<50
1,2,3-trichloropropane	μg/L	<50
Isopropylbenzene	μg/L	<50
Bromobenzene	μg/L	<50
n-propyl benzene	μg/L	<50
2-chlorotoluene	μg/L	<50
4-chlorotoluene	μg/L	<50
1,3,5-trimethyl benzene	μg/L	<50
Tert-butyl benzene	μg/L	<50
1,2,4-trimethyl benzene	μg/L	<50
1,3-dichlorobenzene	μg/L	<50
Sec-butyl benzene	μg/L	<50
1,4-dichlorobenzene	μg/L	<50
4-isopropyl toluene	μg/L	<50
1,2-dichlorobenzene	μg/L	<50
n-butyl benzene	μg/L	<50
1,2-dibromo-3-chloropropane	μg/L	<50
1,2,4-trichlorobenzene	μg/L	<50
Hexachlorobutadiene	μg/L	<50
1,2,3-trichlorobenzene	μg/L	<50
Surrogate Dibromofluoromethane	%	98
Surrogate toluene-d8	%	95
Surrogate 4-BFB	%	101

Method ID	Methodology Summary
Org-023	Water samples are analysed directly by purge and trap GC-MS.

Envirolab Reference: 25139 Page | 4 of 9

Revision No: R00

QUALIT	Y CONTROL	.: VOCs i	n water			Du	ıplicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			07/04/2021	[NT]		[NT]	[NT]	07/04/2021	
Date analysed	-			07/04/2021	[NT]		[NT]	[NT]	07/04/2021	
Dichlorodifluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Bromomethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloroethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	97	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chloroform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	99	
2,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	99	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	97	
1,1-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Cyclohexane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromomethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
Bromodichloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	97	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	97	
1,2-dibromoethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Tetrachloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
1,1,1,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromoform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	[NT]	
Styrene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	

QUALITY CONTROL: VOCs in water						Du	ıplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2,3-trichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Isopropylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Bromobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
n-propyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
2-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
4-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,3,5-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Tert-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2,4-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,3-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Sec-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,4-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
4-isopropyl toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
n-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Hexachlorobutadiene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Surrogate Dibromofluoromethane	%		Org-023	99	[NT]		[NT]	[NT]	101	[NT]
Surrogate toluene-d8	%		Org-023	99	[NT]		[NT]	[NT]	101	[NT]
Surrogate 4-BFB	%		Org-023	99	[NT]		[NT]	[NT]	100	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 25139 Page | 8 of 9

Revision No:

Report Comments

VOC_W: PQL has been raised due to the high concentration of analytes in the sample/s, resulting in the sample/s requiring dilution.

Envirolab Reference: 25139 Page | 9 of 9

Revision No: R00

Envirolab Services Pty Ltd

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

DATA QUALITY ASSESSMENT SUMMARY

Report Details	
Envirolab Report Reference	<u>25139</u>
Client ID	JBS & G Australia Pty Ltd
Project Reference	Melrose Park - 60610
Date Issued	09/04/2021

QC DATA

All laboratory QC data was within the Envirolab Group's specifications.

HOLDING TIME COMPLIANCE EVALUATION

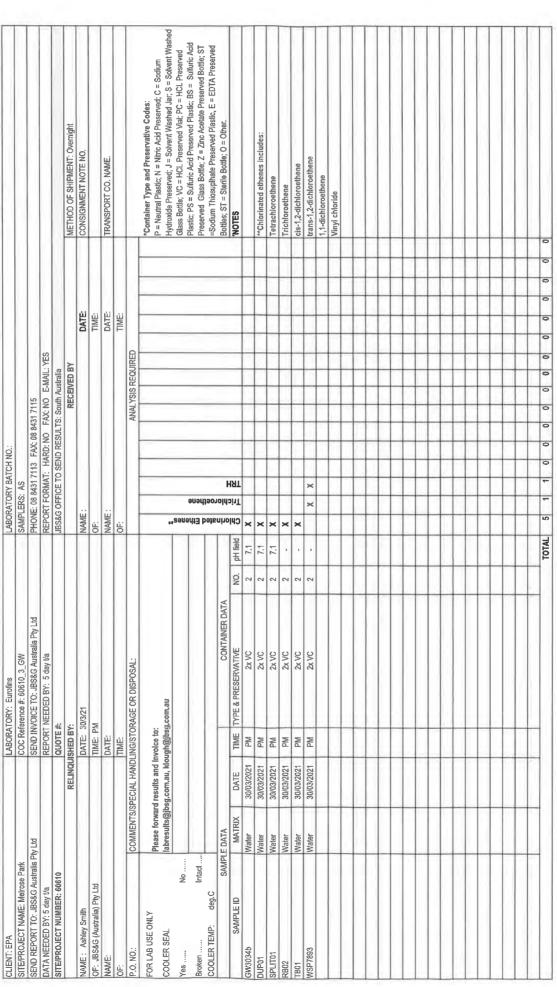
All preservation / holding times (based on AS/ASPHA/ISO/NEPM/USEPA reference documents and standards) are compliant.

Certain analyses have had their recommended technical holding times elongated by filtering and/or freezing on receipt at the laboratory (e.g. BOD, chlorophyll/Pheophytin, nutrients and acid sulphate soil tests).

COMPLIANCE TO QC FREQUENCY (NEPM)

Internal laboratory QC rate complies with NEPM requirements (LCS/MB/MS 1 in 20, Duplicates 1 in 10 samples). Note, samples are batched together with other sample consignments in order to assign QC sample frequency.

QC Evaluation	
Duplicate(s) was performed as per NEPM frequency	✓
Laboratory Control Sample(s) were analysed with the samples received	✓
A Method Blank was performed with the samples received	✓
Matrix spike(s) was performed as per NEPM frequency (Not Applicable for Air samples)	✓


Refer to Certificate of Analysis for all Quality Control data.

Page 1 of 1

CHAIN OF CUSTODY DOCUMENTATION

JBS&G (Australia) Pty Ltd

38 Dequetteville Tce KENT TOWN SA 5067 T: + 61 8 8431 7115

Appendix M Modelling Spreadsheets

Model Input

Site Name/Run Number: Melrose Park, Residential (Slab on Grade)

Note: -Yellow highlighted cells indicate parameters that typically are changed or must be inputted by the

-Dotted outline cells indicate default values that may be changed with justification.

-Toxicity values are taken from Regional Screening Level tables. These tables are updated semi-annually and may not reflect the most current toxicity information.

Use English / Metric Converter

Source Characteristics:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Source medium		Source	Exterior Soil Gas					
Soil gas concentration	(ug/m3)	Cmedium	14000		NA			
Depth below grade to soil gas sample	(m)	Ls	1.00		Vary - 50	NA	WARNING	Ls should be >= Lb +1 m
Average vadose zone temperature	(°C)	Ts	25	25	3-30			
Calc: Source vapor concentration	(ug/m3)	Cs	14000					
Calc: % of pure component saturated vapor concentration	(%)	%Sat	0.003%					
Chemical:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Chemical Name		Chem	Trichloroethylene					
CAS No.		CAS	79-01-6					
Toxicity Factors								
Unit risk factor	(ug/m³)-1	IUR	see note	see note	NA	NA		
Mutagenic compound		Mut	Yes	NA	NA	NA		
Reference concentration	(mg/m³)	RfC	2.00E-03	2.00E-03	NA	NA		
Chemical Properties:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Pure component water solubility	(mg/L)	S	1.28E+03	1.28E+03	NA	NA		
Henry's Law Constant @ 25°C	(atm-m³/mol)	Hc	9.85E-03	9.85E-03	NA	NA		
Calc: Henry's Law Constant @ 25°C	(dimensionless)	Hr	4.03E-01	4.03E-01				
Calc: Henry's Law Constant @ system temperature	(dimensionless)	Hs	4.03E-01	4.03E-01				
Diffusivity in air	(cm2/s)	Dair	6.87E-02	6.87E-02	NA	NA		
Diffusivity in water	(cm2/s)	Dwater	1.02E-05	1.02E-05	NA	NA		

Building Characteristics: Select Building Assumptions O Use ratio for Qsoil/Qbuilding (recommended if no site specific data available) Specify Qsoil and Qbuilding separately; calculate ratio

WARNING: DEFAULT RATIO FOR Qsoil/Qbuilding not used. Please enter site specific data for Qs and Qb.

	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Building setting		Bldg_Setting	Residential	Residential				
Foundation type		Found_Type	Slab-on-grade	Slab-on-grade				
Depth below grade to base of foundation	(m)	Lb	0.10	0.10	0.1 - 2.44	NA		
Foundation thickness	(m)	Lf	0.10	0.10	0.1 - 0.25	NA		
Fraction of foundation area with cracks	(-)	eta	0.001	0.001	0.00019-0.0019	1.00		
Enclosed space floor area	(m2)	Abf	150.00	150.00	80 - 200	NA		
Enclosed space mixing height	(m)	Hb	2.40	2.44	2.13 - 3.05	NA	WARNING	Value is different from default value
Indoor air exchange rate	(1 / hr)	ach	0.60	0.45	.15-1.26	NA	WARNING	Value is different from default value
Qsoil/Qbuilding	(-)	Qsoil_Qb	0.0050	0.0030	0.0001 - 0.05	1.24	WARNING	Value is different from default value
Calc: Building ventilation rate	(m3/hr)	Qb	216.00	164.70	NA	0.30		
Calc: Average vapor flow rate into building	(m3/hr)	Qsoil	1.08	0.49	NA	NA		

Model Input

Site Name/Run Number: Melrose Park, Residential (Slab on Grade)

Chemical Name: Trichloroethylene CAS No. 79-01-6

Depth below grade to soil gas sample: 1.00 meters

Vadose zone characteristics:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Stratum A (Top of soil profile):		_			•			
Stratum A SCS soil type		SCS_A	Sandy Clay					
Stratum A thickness (from surface)	(m)	hSA	1.20					
Stratum A total porosity	(-)	nSA	0.370	0.385	NA	0.20	WARNING	Value is different from default value
Stratum A water-filled porosity	(-)	nwSA	0.340	0.197	0.117 - 0.28	0.25	WARNING	Value is different from default value
Stratum A bulk density	(g/cm³)	rhoSA	2.010	1.630	NA	0.05	WARNING	Value is different from default value
Stratum B (Soil layer below Stratum A):		_						
Stratum B SCS soil type		SCS_B	Not Present					
Stratum B thickness	(m)	hSB	0.00					
Stratum B total porosity	(-)	nSB			NA	NA		
Stratum B water-filled porosity	(-)	nwSB			NA	NA		
Stratum B bulk density	(g/cm³)	rhoSB			NA	NA		
Stratum C (Soil layer below Stratum B):		-						
Stratum C SCS soil type		SCS_C	Not Present					
Stratum C thickness	(m)	hSC	0.00					
Stratum C total porosity	(-)	nSC			NA	NA		
Stratum C water-filled porosity	(-)	nwSC			NA	NA		
Stratum C bulk density	(g/cm³)	rhoSC			NA	NA		
Stratum containing soil gas sample		les .						
Stratum A, B, or C		src_soil	Stratum A					

Model Output
Site Name/Run Numberse
Park, Residential (Slab on Grade)
Chemical Name: Trichloroethylene CAS No. 79-01-6

Range is based on the reasonable range of Osoil/Obuilding values, as reported in the literature.

Chemical Name: Trichloroethylene CAS No. 79-01-6							
ource to Indoor Air Attenuation Factor	Units	Symbol	Value	Range	Default	Default Range	Flag
Soil gas to indoor air attenuation coefficient	(-)	alpha	2.7E-06	2.6E-06 - 2.7E-06	5.5E-04	8.7E-05 - 6.6E-04	
							WARNING
redicted Indoor Air Concentration	Units	Symbol	Value	Range	Default	Default Range	Flag
Indoor air concentration due to vapor intrusion	(ug/m3)	Cia	3.8E-02	3.7E-02 - 3.8E-02	7.6E+00	1.2E+00 - 9.2E+00	WARNING
	(ppbv)		7.0E-03	6.8E-03 - 7.0E-03	1.4E+00	2.3E-01 - 1.7E+00	WARNING
redicted Vapor Conc. Beneath Foundation	Units	Symbol	Value	Range	Default	Default Range	Flag
Subslab vapor concentration	(ug/m3)	Css	7.5E+00	7.5E-01 - 3.7E+02	2.5E+03	1.2E+04 - 9.2E+04	
	(vdqq)		1.4E+00	1.4E-01 - 6.8E+01	4.7E+02	2.3E+03 - 1.7E+04	
iffusive Transport Upward Through Vadose Zone	Units	Symbol	Value	Range	Default	Default Range	Flag
Effective diffusion coefficient through Stratum A	(cm2/sec)	DeffA	9.3E-06	-	1.8E-03	-	
Effective diffusion coefficient through Stratum B	(cm2/sec)	DeffB		-		-	
Effective diffusion coefficient through Stratum C	(cm2/sec)	DeffC		=		-	
Effective diffusion coefficient through unsaturated zone	(cm2/sec)	DeffT	9.3E-06	-	1.8E-03	-	
critical Parameters		Symbol	Value	Range	Default	Default Range	Flag
α for diffusive transport from source to building with dirt floor foundation	(-)	A_Param	2.7E-06	-	6.7E-04		9
Pe (Peclet Number) for transport through the foundation (advection / diffusion)	(-)	B_Param	2.1E+05	4.1E+03 - 2.1E+06	5.0E+02	1.7E+01 - 8.3E+03	
$\boldsymbol{\alpha}$ for convective transport from subslab to building	(-)	C_Param	5.0E-03	1.0E-04 - 5.0E-02	3.0E-03	1.0E-04 - 5.0E-02	

Model Input

Site Name/Run Number: Melrose Park, Residential (Slab on Grade)

Note:

-Yellow highlighted cells indicate parameters that typically are changed or must be inputted by the

-Dotted outline cells indicate default values that may be changed with justification.

-Toxicity values are taken from Regional Screening Level tables. These tables are updated semi-annually and may not reflect the most current toxicity information.

Use English / Metric Converter

Source Characteristics:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Source medium		Source	Exterior Soil Gas					
Soil gas concentration	(ug/m3)	Cmedium	540	,	NA			
Depth below grade to soil gas sample	(m)	Ls	1.00		Vary - 50	NA	WARNING	Ls should be $ >= Lb + 1 m $
Average vadose zone temperature	(°C)	Ts	25	25	3-30			
Calc: Source vapor concentration	(ug/m3)	Cs	540					
Calc: % of pure component saturated vapor concentration	(%)	%Sat	0.000%					
Chemical:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Chemical Name		Chem	Dichloroethylene, 1,1-					
CAS No.		CAS	75-35-4	_				
Toxicity Factors								
Unit risk factor	(ug/m³) ⁻¹	IUR	Not Available	Not Available	NA	NA		No IUR available for this compound.
Mutagenic compound		Mut	No	NA	NA	NA		
Reference concentration	(mg/m³)	RfC	2.00E-01	2.00E-01	NA	NA		
Chemical Properties:	Units	Symbol	Value	Default	Potential Span	cv	Flag	Comment
Pure component water solubility	(mg/L)	S	2.42E+03	2.42E+03	NA	NA		
Henry's Law Constant @ 25°C	(atm-m³/mol)	Hc	2.61E-02	2.61E-02	NA	NA		
Calc: Henry's Law Constant @ 25°C	(dimensionless)	Hr	1.07E+00	1.07E+00				
Calc: Henry's Law Constant @ system temperature	(dimensionless)	Hs	1.07E+00	1.07E+00				
Diffusivity in air	(cm2/s)	Dair	8.63E-02	8.63E-02	NA	NA		
Diffusivity in water	(cm2/s)	Dwater	1.10E-05	1.10E-05	NA	NA		

Building Characteristics: Select Building Assumptions O Use ratio for Qsoil/Qbuilding (recommended if no site specific data available) WARNING: DEFAULT RATIO FOR Qsoil/Qbuilding not used. Specify Qsoil and Qbuilding separately; calculate ratio Please enter site specific data for Qs and Qb. **Potential** Units Symbol Value Default CV Flag Comment Span **Building setting** Bldg_Setting Residential Residential Foundation type Found_Type Slab-on-grade Slab-on-grade Depth below grade to base of foundation (m) Lb 0.10 0.10 0.1 - 2.44 NA Foundation thickness (m) Lf 0.10 0.10 0.1 - 0.25 NA (-) 0.001 0.001 0.00019-0.0019 1.00 Fraction of foundation area with cracks eta Enclosed space floor area (m2) Abf 150.00 150.00 80 - 200 NA Нb 2.40 2.44 2.13 - 3.05 WARNING Value is different from default value Enclosed space mixing height (m) NA WARNING Indoor air exchange rate (1 / hr) ach 0.60 0.45 .15-1.26 NA Value is different from default value

0.0030

164.70

0.49

0.0001 - 0.05

NA

NA

WARNING

Value is different from default value

1.24

0.30

NA

Model Input

Qsoil/Qbuilding

Calc: Building ventilation rate

Calc: Average vapor flow rate into building

Site Name/Run Number:

(-)

(m3/hr)

(m3/hr)

Qsoil_Qb

Qb

Qsoil

Melrose Park, Residential (Slab on Grade)

0.0050

216.00

1.08

Chemical Name: Dichloroethylene, 1,1- CAS No. 75-35-4 Depth below grade to soil gas sample: 1.00 meters

Vadose zone characteristics:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Stratum A (Top of soil profile):		-						
Stratum A SCS soil type		SCS_A	Sandy Clay					
Stratum A thickness (from surface)	(m)	hSA	1.20	•				
Stratum A total porosity	(-)	nSA	0.370	0.385	NA	0.20	WARNING	Value is different from default value
Stratum A water-filled porosity	(-)	nwSA	0.340	0.197	0.117 - 0.28	0.25	WARNING	Value is different from default value
Stratum A bulk density	(g/cm³)	rhoSA	2.010	1.630	NA	0.05	WARNING	Value is different from default value
Stratum B (Soil layer below Stratum A):				•				
Stratum B SCS soil type		SCS_B	Not Present					
Stratum B thickness	(m)	hSB	0.00					
Stratum B total porosity	(-)	nSB			NA	NA		
Stratum B water-filled porosity	(-)	nwSB			NA	NA		
Stratum B bulk density	(g/cm³)	rhoSB			NA	NA		
Stratum C (Soil layer below Stratum B):				•				
Stratum C SCS soil type		SCS_C	Not Present					
Stratum C thickness	(m)	hSC	0.00	•				
Stratum C total porosity	(-)	nSC			NA	NA		
Stratum C water-filled porosity	(-)	nwSC			NA	NA		
Stratum C bulk density	(g/cm³)	rhoSC			NA	NA		
Stratum containing soil gas sample		Ann	enconcernation and a second and a					
Stratum A, B, or C		src_soil	Stratum A					

 Model Output
 Site Name/Run Numberse
 Park, Residential (Slab on Grade)

 Chemical Name:
 Dichloroethylene, 1,1 CAS No. 75-35-4

Numbers Park, Residential (Slab on Grade)

Range is based on the reasonable range of Osoil/Obuilding values, as reported in the literature.

Source to Indoor Air Attenuation Factor	Units	Symbol	Value	Range	Default	Default Range	Flag
Soil gas to indoor air attenuation coefficient	(-)	alpha	2.1E-06	2.1E-06 - 2.1E-06	6.6E-04	8.9E-05 - 8.2E-04	
							WARNING
Predicted Indoor Air Concentration	Units	Symbol	Value	Range	Default	Default Range	Flag
Indoor air concentration due to vapor intrusion	(ug/m3)	Cia	1.1E-03	1.1E-03 - 1.1E-03	3.5E-01	4.8E-02 - 4.5E-01	WARNING
	(ppbv)		2.9E-04	2.8E-04 - 2.9E-04	8.9E-02	1.2E-02 - 1.1E-01	WARNING
Predicted Vapor Conc. Beneath Foundation	Units	Symbol	Value	Range	Default	Default Range	Flag
Subslab vapor concentration	(ug/m3)	Css	2.3E-01	2.3E-02 - 1.1E+01	1.2E+02	4.8E+02 - 4.5E+03	
	(vdqq)		5.8E-02	5.8E-03 - 2.8E+00	3.0E+01	1.2E+02 - 1.1E+03	
Diffusive Transport Upward Through Vadose Zone	Units	Symbol	Value	Range	Default	Default Range	Flag
Effective diffusion coefficient through Stratum A	(cm2/sec)	DeffA	7.4E-06	-	2.2E-03	-	
Effective diffusion coefficient through Stratum B	(cm2/sec)	DeffB		-		-	
Effective diffusion coefficient through Stratum C	(cm2/sec)	DeffC		=		-	
Effective diffusion coefficient through unsaturated zone	(cm2/sec)	DeffT	7.4E-06	-	2.2E-03	-	
Critical Parameters		Symbol	Value	Range	Default	Default Range	Flag
α for diffusive transport from source to building with		•		-	0.45.04		
dirt floor foundation	(-)	A_Param	2.1E-06	-	8.4E-04		
	(-)	A_Param B_Param	2.1E-06 2.6E+05	5.2E+03 - 2.6E+06	8.4E-04 4.0E+02	1.3E+01 - 6.6E+03	

Model Input

Site Name/Run Number: Melrose Park, Commerical

Note:

-Yellow highlighted cells indicate parameters that typically are changed or must be inputted by the

-Dotted outline cells indicate default values that may be changed with justification.

-Toxicity values are taken from Regional Screening Level tables. These tables are updated semi-annually and may not reflect the most current toxicity information.

Use English / Metric Converter

Source Characteristics:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Source medium		Source	Exterior Soil Gas					
Soil gas concentration	(ug/m3)	Cmedium	14000		NA			
Depth below grade to soil gas sample	(m)	Ls	1.00		Vary - 50	NA	WARNING	Ls should be >= Lb +1 m
Average vadose zone temperature	(°C)	Ts	25	25	3-30			
Calc: Source vapor concentration	(ug/m3)	Cs	14000					
Calc: % of pure component saturated vapor concentration	(%)	%Sat	0.003%					
Chemical:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Chemical Name		Chem	Trichloroethylene					
CAS No.		CAS	79-01-6					
Toxicity Factors								
Unit risk factor	(ug/m³) ⁻¹	IUR	see note	see note	NA	NA		
Mutagenic compound		Mut	Yes	NA	NA	NA		
Reference concentration	(mg/m³)	RfC	2.00E-03	2.00E-03	NA	NA		
Chemical Properties:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Pure component water solubility	(mg/L)	S	1.28E+03	1.28E+03	NA	NA		
Henry's Law Constant @ 25°C	(atm-m³/mol)	Hc	9.85E-03	9.85E-03	NA	NA		
Calc: Henry's Law Constant @ 25°C	(dimensionless)	Hr	4.03E-01	4.03E-01				
Calc: Henry's Law Constant @ system temperature	(dimensionless)	Hs	4.03E-01	4.03E-01				
Diffusivity in air	(cm2/s)	Dair	6.87E-02	6.87E-02	NA	NA		
Diffusivity in water	(cm2/s)	Dwater	1.02E-05	1.02E-05	NA	NA		

Building Characteristics: Select Building Assumptions

O Use ratio for Qsoil/Qbuilding (recommended if no site specific data available)

Specify Qsoil and Qbuilding separately; calculate ratio

WARNING: DEFAULT RATIO FOR Qsoil/Qbuilding not used. Please enter site specific data for Qs and Qb.

	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Building setting		Bldg_Setting	Commercial	Commercial				
Foundation type		Found_Type	Slab-on-grade	Slab-on-grade				
Depth below grade to base of foundation	(m)	Lb	0.15	0.20	0.1 - 2.44	NA	WARNING	Value is different from default value
Foundation thickness	(m)	Lf	0.15	0.20	0.1 - 0.25	NA	WARNING	Value is different from default value
Fraction of foundation area with cracks	(-)	eta	0.001	0.001	0.00019-0.0019	1.00		
Enclosed space floor area	(m2)	Abf	400.00	1500.00	80-1000	NA	WARNING	Value is different from default value
Enclosed space mixing height	(m)	Hb	3.00	3.00	2.13 - 3.05	NA		
Indoor air exchange rate	(1 / hr)	ach	0.83	1.50	.3-4.1	NA	WARNING	Value is different from default value
Qsoil/Qbuilding	(-)	Qsoil_Qb	0.0050	0.0030	0.0001 - 0.05	1.24	WARNING	Value is different from default value
Calc: Building ventilation rate	(m3/hr)	Qb	996.00	6750.00	NA	0.30		
Calc: Average vapor flow rate into building	(m3/hr)	Qsoil	4.98	20.25	NA	NA		

Model Input

Site Name/Run Number: Melrose Park, Commercial

Chemical Name: Trichloroethylene CAS No. 79-01-6

Depth below grade to soil gas sample: 1.00 meters

Vadose zone characteristics:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Stratum A (Top of soil profile):		-						
Stratum A SCS soil type		SCS_A	Sandy Clay					
Stratum A thickness (from surface)	(m)	hSA	1.20					
Stratum A total porosity	(-)	nSA	0.370	0.385	NA	0.20	WARNING	Value is different from default value
Stratum A water-filled porosity	(-)	nwSA	0.340	0.197	0.117 - 0.28	0.25	WARNING	Value is different from default value
Stratum A bulk density	(g/cm³)	rhoSA	2.010	1.630	NA	0.05	WARNING	Value is different from default value
Stratum B (Soil layer below Stratum A):								
Stratum B SCS soil type		SCS_B	Not Present					
Stratum B thickness	(m)	hSB	0.00					
Stratum B total porosity	(-)	nSB	Andreas		NA	NA		
Stratum B water-filled porosity	(-)	nwSB			NA	NA		
Stratum B bulk density	(g/cm³)	rhoSB	and the same of th		NA	NA		
Stratum C (Soil layer below Stratum B):		_						
Stratum C SCS soil type		SCS_C	Not Present					
Stratum C thickness	(m)	hSC	0.00					
Stratum C total porosity	(-)	nSC	and the second s		NA	NA		
Stratum C water-filled porosity	(-)	nwSC			NA	NA		
Stratum C bulk density	(g/cm³)	rhoSC			NA	NA		
Stratum containing soil gas sample		Assess						
Stratum A, B, or C		src_soil	Stratum A					

Range is based on the reasonable range of Osoil/Obuilding values, as reported in the literature.

Model Output
Chemical Name: Trichloroethylene
Site Name/Run Number: Melrose Park, Commerical
CAS No. 79-01-6

Chemical Name. Inchibitethylene CAS No. 79-01-0							
ource to Indoor Air Attenuation Factor	Units	Symbol	Value	Range	Default	Default Range	Flag
Soil gas to indoor air attenuation coefficient	(-)	alpha	1.6E-06	1.6E-06 - 1.6E-06	1.7E-04	6.4E-05 - 1.8E-04	
<u> </u>		•					WARNING
Predicted Indoor Air Concentration	Units	Symbol	Value	Range	Default	Default Range	Flag
Indoor air concentration due to vapor intrusion	(ug/m3)	Cia	2.3E-02	2.3E-02 - 2.3E-02	2.4E+00	9.0E-01 - 2.5E+00	WARNING
	(ppbv)		4.3E-03	4.2E-03 - 4.3E-03	4.5E-01	1.7E-01 - 4.7E-01	WARNING
redicted Vapor Conc. Beneath Foundation	Units	Symbol	Value	Range	Default	Default Range	Flag
Subslab vapor concentration	(ug/m3)	Css	4.6E+00	4.6E-01 - 2.3E+02	8.0E+02	9.0E+03 - 2.5E+04	
	(vdqq)		8.5E-01	8.5E-02 - 4.2E+01	1.5E+02	1.7E+03 - 4.7E+03	
Diffusive Transport Upward Through Vadose Zone	Units	Symbol	Value	Range	Default	Default Range	Flag
Effective diffusion coefficient through Stratum A	(cm2/sec)	DeffA	9.3E-06	-	1.8E-03	-	
Effective diffusion coefficient through Stratum B	(cm2/sec)	DeffB		-		-	
Effective diffusion coefficient through Stratum C	(cm2/sec)	DeffC		-		-	
Effective diffusion coefficient through unsaturated zone	(cm2/sec)	DeffT	9.3E-06	- -	1.8E-03	- -	
Critical Parameters		Symbol	Value	Range	Default	Default Range	Flag
α for diffusive transport from source to building with dirt floor foundation	(-)	A_Param	1.6E-06	-	1.8E-04		
Pe (Peclet Number) for transport through the foundation (advection / diffusion)	(-)	B_Param	5.4E+05	1.1E+04 - 5.4E+06	4.1E+03	1.4E+02 - 6.9E+04	
$\boldsymbol{\alpha}$ for convective transport from subslab to building	(-)	C_Param	5.0E-03	1.0E-04 - 5.0E-02	3.0E-03	1.0E-04 - 5.0E-02	

Model Input

Note:

Site Name/Run Number: Melrose Park, Trench

-Yellow highlighted cells indicate parameters that typically are changed or must be inputted by the

-Dotted outline cells indicate default values that may be changed with justification.

-Toxicity values are taken from Regional Screening Level tables. These tables are updated semi-annually and may not reflect the most current toxicity information.

Use English /	Metric Converter

Source Characteristics:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Source medium		Source	Exterior Soil Gas					
Soil gas concentration	(ug/m3)	Cmedium	14000		NA			
Depth below grade to soil gas sample	(m)	Ls	0.10		Vary - 50	NA	WARNING	Ls should be >= Lb +1 m
Average vadose zone temperature	(°C)	Ts	25	25	3-30			
Calc: Source vapor concentration	(ug/m3)	Cs	14000					
Calc: % of pure component saturated vapor concentration	(%)	%Sat	0.003%					
Chemical:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Chemical Name		Chem	Trichloroethylene					
CAS No.		CAS	79-01-6					
Toxicity Factors								
Unit risk factor	(ug/m³)-1	IUR	see note	see note	NA	NA		
Mutagenic compound		Mut	Yes	NA	NA	NA		
Reference concentration	(mg/m³)	RfC	2.00E-03	2.00E-03	NA	NA		
Chemical Properties:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Pure component water solubility	(mg/L)	S	1.28E+03	1.28E+03	NA	NA		
Henry's Law Constant @ 25°C	(atm-m³/mol)	Hc	9.85E-03	9.85E-03	NA	NA		
Calc: Henry's Law Constant @ 25°C	(dimensionless)	Hr	4.03E-01	4.03E-01				
Calc: Henry's Law Constant @ system temperature	(dimensionless)	Hs	4.03E-01	4.03E-01				
Diffusivity in air	(cm2/s)	Dair	6.87E-02	6.87E-02	NA	NA		
Diffusivity in water	(cm2/s)	Dwater	1.02E-05	1.02E-05	NA	NA		

Building Characteristics: Select Building Assumptions O Use ratio for Qsoil/Qbuilding (recommended if no site specific data available) WARNING: DEFAULT RATIO FOR Qsoil/Qbuilding not used. Specify Qsoil and Qbuilding separately; calculate ratio Please enter site specific data for Qs and Qb. **Potential** Units Symbol Value Default CV Flag Comment Span **Building setting** Bldg_Setting Residential Residential Basement w/ dirt Foundation type Found_Type Basement w/ dirt floo floor Depth below grade to base of foundation (m) Lb 0.00 2.00 0.1 - 2.44 NA WARNING Value is different from default value Foundation thickness (m) Lf 0.00 0.00 NA NA Value is different from default value (-) 1.000 1.000 NA 1.00 Fraction of foundation area with cracks eta WARNING Enclosed space floor area (m2) Abf 10.00 150.00 80 - 200 NA Value is different from default value Нb 1.00 2.44 - 4.88 WARNING Enclosed space mixing height (m) 3.66 NA WARNING Indoor air exchange rate (1 / hr) ach 87.50 0.45 .15-1.26 NA Value is different from default value Qsoil/Qbuilding (-) Qsoil_Qb 0.0000 0.0030 0.0001 - 0.05 1.24 Value is different from default value Calc: Building ventilation rate (m3/hr) Qb 875.00 247.05 NA 0.30 Calc: Average vapor flow rate into building (m3/hr) Qsoil N/A NA NA NA

Model Input

Site Name/Run Number:

Melrose Park, Trench

Chemical Name: Trichloroethylene CAS No. 79-01-6 Depth below grade to soil gas sample: 0.10 meters

Vadose zone characteristics:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Stratum A (Top of soil profile):								
Stratum A SCS soil type		SCS_A	Sandy Clay					
Stratum A thickness (from surface)	(m)	hSA	1.20					
Stratum A total porosity	(-)	nSA	0.370	0.385	NA	0.20	WARNING	Value is different from default value
Stratum A water-filled porosity	(-)	nwSA	0.340	0.197	0.117 - 0.28	0.25	WARNING	Value is different from default value
Stratum A bulk density	(g/cm³)	rhoSA	2.010	1.630	NA	0.05	WARNING	Value is different from default value
Stratum B (Soil layer below Stratum A):								
Stratum B SCS soil type		SCS_B	Not Present					
Stratum B thickness	(m)	hSB	0.00					
Stratum B total porosity	(-)	nSB			NA	NA		
Stratum B water-filled porosity	(-)	nwSB			NA	NA		
Stratum B bulk density	(g/cm³)	rhoSB			NA	NA		
Stratum C (Soil layer below Stratum B):		_						
Stratum C SCS soil type		scs_c	Not Present					
Stratum C thickness	(m)	hSC	0.00					
Stratum C total porosity	(-)	nSC			NA	NA		
Stratum C water-filled porosity	(-)	nwSC			NA	NA		
Stratum C bulk density	(g/cm³)	rhoSC			NA	NA		
Stratum containing soil gas sample		Anon						
Stratum A, B, or C		src_soil	Stratum A					

Range is based on the reasonable range of Qsoil/Qbuilding values as reported in the literature

Model Output Site Name/R Chemical Name: Trichloroethylene CAS No. 79-01-6		Melrose Park, Trench	300 00 00 00 00 00 00 00 00 00 00 00 00			Range is based on the reasonable range of Osoil/Obuilding values, as reported in the literature.		
Source to Indoor Air Attenuation Factor	Units	Symbol	Value	Range	Default	Default Range	Flag	
Soil gas to indoor air attenuation coefficient	(-)	alpha	3.8E-07	3.8E-07 - 3.8E-07	-3.4E-04	-3.4E-043.4E-04	WARNING	
Predicted Indoor Air Concentration	Units	Symbol	Value	Range	Default	Default Range	Flag	
Indoor air concentration due to vapor intrusion	(ug/m3)	Cia	5.4E-03	5.4E-03 - 5.4E-03	-4.7E+00	-4.7E+004.7E+00	WARNING	
	(ppbv)		1.0E-03	1.0E-03 - 1.0E-03	-8.8E-01	-8.8E-018.8E-01	WARNING	
Predicted Vapor Conc. Beneath Foundation	Units	Symbol	Value	Range	Default	Default Range	Flag	
Subslab vapor concentration	(ug/m3)	Css	NA	NA - NA	NA	NA - NA		
·	(ppbv)		NA	NA - NA	NA	NA - NA		
Diffusive Transport Upward Through Vadose Zone	Units	Symbol	Value	Range	Default	Default Range	Flag	
Effective diffusion coefficient through Stratum A	(cm2/sec)	DeffA	9.3E-06	-	1.8E-03	=		
Effective diffusion coefficient through Stratum B	(cm2/sec)	DeffB		=		-		
Effective diffusion coefficient through Stratum C	(cm2/sec)	DeffC		-		-		
				-		-		
Effective diffusion coefficient through unsaturated zone	(cm2/sec)	DeffT	9.3E-06	-	1.8E-03	-		
Critical Parameters		Symbol	Value	Range	Default	Default Range	Flag	
α for diffusive transport from source to building with dirt floor foundation	(-)	A_Param	3.8E-07	-	-3.4E-04			
Pe (Peclet Number) for transport through the foundation (advection / diffusion)	(-)	B_Param	0.0E+00	0.0E+00 - 0.0E+00	0.0E+00	0.0E+00 - 0.0E+00		
$\boldsymbol{\alpha}$ for convective transport from subslab to building	(-)	C_Param	0.0E+00	0.0E+00 - 5.0E-02	3.0E-03	0.0E+00 - 5.0E-02		

Model Input

Site Name/Run Number: Melrose Park, Trench

Note:

-Yellow highlighted cells indicate parameters that typically are changed or must be inputted by the

-Dotted outline cells indicate default values that may be changed with justification.

-Toxicity values are taken from Regional Screening Level tables. These tables are updated semi-annually and may not reflect the most current toxicity information.

Use English / Metric Converter

Source Characteristics:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Source medium		Source	Exterior Soil Gas					
Soil gas concentration	(ug/m3)	Cmedium	540		NA			
Depth below grade to soil gas sample	(m)	Ls	0.10		Vary - 50	NA	WARNING	Ls should be >= Lb +1 m
Average vadose zone temperature	(°C)	Ts	25	25	3-30			
Calc: Source vapor concentration	(ug/m3)	Cs	540					
Calc: % of pure component saturated vapor concentration	(%)	%Sat	0.000%					
Chemical:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Chemical Name		Chem	Dichloroethylene, 1,1-					
CAS No.		CAS	75-35-4					
Toxicity Factors								
Unit risk factor	(ug/m³) ⁻¹	IUR	Not Available	Not Available	NA	NA		No IUR available for this compound.
Mutagenic compound		Mut	No	NA	NA	NA		
Reference concentration	(mg/m³)	RfC	2.00E-01	2.00E-01	NA	NA		
Chemical Properties:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Pure component water solubility	(mg/L)	S	2.42E+03	2.42E+03	NA	NA		
Henry's Law Constant @ 25°C	(atm-m³/mol)	Hc	2.61E-02	2.61E-02	NA	NA		
Calc: Henry's Law Constant @ 25°C	(dimensionless)	Hr	1.07E+00	1.07E+00				
Calc: Henry's Law Constant @ system temperature	(dimensionless)	Hs	1.07E+00	1.07E+00				
Diffusivity in air	(cm2/s)	Dair	8.63E-02	8.63E-02	NA	NA		
Diffusivity in water	(cm2/s)	Dwater	1.10E-05	1.10E-05	NA	NA		

Building Characteristics: Select Building Assumptions O Use ratio for Qsoil/Qbuilding (recommended if no site specific data available) WARNING: DEFAULT RATIO FOR Qsoil/Qbuilding not used. Specify Qsoil and Qbuilding separately; calculate ratio Please enter site specific data for Qs and Qb. **Potential** Units Symbol Value Default CV Flag Comment Span **Building setting** Bldg_Setting Residential Residential Basement w/ dirt Foundation type Found_Type Basement w/ dirt floo floor Depth below grade to base of foundation (m) Lb 0.00 2.00 0.1 - 2.44 NA WARNING Value is different from default value Foundation thickness (m) Lf 0.00 0.00 NA NA Value is different from default value (-) 1.000 1.000 NA 1.00 Fraction of foundation area with cracks eta WARNING Enclosed space floor area (m2) Abf 10.00 150.00 80 - 200 NA Value is different from default value Нb 1.00 2.44 - 4.88 WARNING Enclosed space mixing height (m) 3.66 NA WARNING Indoor air exchange rate (1 / hr) ach 87.50 0.45 .15-1.26 NA Value is different from default value Qsoil/Qbuilding (-) Qsoil_Qb 0.0000 0.0030 0.0001 - 0.05 1.24 Value is different from default value Calc: Building ventilation rate (m3/hr) Qb 875.00 247.05 NA 0.30 Calc: Average vapor flow rate into building (m3/hr) Qsoil N/A NA NA NA

Model Input

Site Name/Run Number:

Melrose Park, Trench

Chemical Name: Dichloroethylene, 1,1- CAS No. 75-35-4

Depth below grade to soil gas sample: 0.10 meters

Vadose zone characteristics:	Units	Symbol	Value	Default	Potential Span	CV	Flag	Comment
Stratum A (Top of soil profile):		_			•			
Stratum A SCS soil type		SCS_A	Sandy Clay					
Stratum A thickness (from surface)	(m)	hSA	1.20					
Stratum A total porosity	(-)	nSA	0.370	0.385	NA	0.20	WARNING	Value is different from default value
Stratum A water-filled porosity	(-)	nwSA	0.340	0.197	0.117 - 0.28	0.25	WARNING	Value is different from default value
Stratum A bulk density	(g/cm³)	rhoSA	2.010	1.630	NA	0.05	WARNING	Value is different from default value
Stratum B (Soil layer below Stratum A):		_	A					
Stratum B SCS soil type		SCS_B	Not Present					
Stratum B thickness	(m)	hSB	0.00					
Stratum B total porosity	(-)	nSB			NA	NA		
Stratum B water-filled porosity	(-)	nwSB			NA	NA		
Stratum B bulk density	(g/cm³)	rhoSB			NA	NA		
Stratum C (Soil layer below Stratum B):		_						
Stratum C SCS soil type		SCS_C	Not Present					
Stratum C thickness	(m)	hSC	0.00					
Stratum C total porosity	(-)	nSC			NA	NA		
Stratum C water-filled porosity	(-)	nwSC			NA	NA		
Stratum C bulk density	(g/cm³)	rhoSC			NA	NA		
Stratum containing soil gas sample		Anon						
Stratum A, B, or C		src_soil	Stratum A				ļ	

Range is based on the reasonable range of Qsoil/Qbuilding values, as reported in the literature.

Chemical Name: Dichloroethylene, 1,1- CAS No.	75-35-4	Melrose Park, Trench		Value Range		values, as reported in the lit	
Source to Indoor Air Attenuation Factor	Units	Symbol	Value	Range	Default	Default Range	Flag
Soil gas to indoor air attenuation coefficient	(-)	alpha	3.1E-07	3.1E-07 - 3.1E-07	-4.2E-04	-4.2E-044.2E-04	WARNING
Predicted Indoor Air Concentration	Units	Symbol	Value	Range	Default	Default Range	Flag
Indoor air concentration due to vapor intrusion	(ug/m3)	Cia	1.6E-04	1.6E-04 - 1.6E-04	-2.3E-01	-2.3E-012.3E-01	WARNING
	(ppbv)		4.2E-05	4.2E-05 - 4.2E-05	-5.8E-02	-5.8E-025.8E-02	WARNING
Predicted Vapor Conc. Beneath Foundation	Units	Symbol	Value	Range	Default	Default Range	Flag
Subslab vapor concentration	(ug/m3)	Css	NA	NA - NA	NA	NA - NA	
	(ppbv)		NA	NA - NA	NA	NA - NA	
Diffusive Transport Upward Through Vadose Zone	. Units	Symbol	Value	Range	Default	Default Range	Flag
Effective diffusion coefficient through Stratum A	(cm2/sec)	DeffA	7.4E-06	-	2.2E-03	-	
Effective diffusion coefficient through Stratum B	(cm2/sec)	DeffB		-		-	
Effective diffusion coefficient through Stratum C	(cm2/sec)	DeffC		-		-	
Effective diffusion coefficient through unsaturated zone	(cm2/sec)	DeffT	7.4E-06	-	2.2E-03	-	
Effective diffusion coefficient through disaturated zone	(CITIZ/SeC)	Delli	7.4E-U0	-	2.2E-U3	- -	
Critical Parameters		Symbol	Value	Range	Default	Default Range	Flag
α for diffusive transport from source to building with dirt floor foundation	(-)	A_Param	3.1E-07	-	-4.2E-04		
Pe (Peclet Number) for transport through the foundation (advection / diffusion)	(-)	B_Param	0.0E+00	0.0E+00 - 0.0E+00	0.0E+00	0.0E+00 - 0.0E+00	
α for convective transport from subslab to building	(-)	C_Param	0.0E+00	0.0E+00 - 5.0E-02	3.0E-03	0.0E+00 - 5.0E-02	

Appendix N ILCR and HI Calculation Spreadsheets

INCREASED LIFETIME CANCER RISK AND HAZARD INDEX CALCULATION RESIDENTIAL DWELLING

Calculation of Hazard Index (non-carcinogenic endpoints)

Constituent (mg/m3)	Risk/HI	Inhalation Tox	RAGS F	Background	Background	Residential Dwelling	
		(mg/m³)		Inhalation	Inhalation	Modelled Indoor Air	INHALATION HI
				Concentration	Concentration	Concentration	
				Percentage of RfC (%)	(mg/m3)	(mg/m3)	
Trichloroethene	HI	2.0E-03	8.3E-01	10%	2.0E-04	3.8E-05	1.8E-02
1,1-dichloroethene	HI	2.0E-01	8.3E-01	N/A	N/A	1.1E-06	4.6E-06

Calculation of Increased Lifetime Cancer Risk (carcinogenic endpoints)

Constituent (mg/m3)	Risk/HI	Unit Risk (mg/m ³) ⁻¹	RAGS F	Residential Dwelling		
				Modelled Indoor Air	INHALATION RISK	
				Concentration		
				(mg/m3)		
Trichloroethene	Risk	4.0E-03	4.2E-01	3.8E-05	6.4E-08	

INCREASED LIFETIME CANCER RISK AND HAZARD INDEX CALCULATION COMMERCIAL BUILDING

Calculation of Hazard Index (non-carcinogenic endpoints)

Constituent (mg/m3)	Risk/HI	Inhalation Tox	RAGS F	Background	Background	Commercial Building	
		(mg/m ³)		Inhalation	Inhalation	Modelled Indoor Air	INHALATION HI
				Concentration	Concentration	Concentration	
				Percentage of RfC (%)	(mg/m3)	(mg/m3)	
Trichloroethene	HI	2.0E-03	2.2E-01	10%	2.0E-04	2.3E-05	2.8E-03

Calculation of Increased Lifetime Cancer Risk (carcinogenic endpoints)

carcalation of increased Enec	inic career rask (carein	ogerne enaponits,	cardination of interessed Electrice Carder Mok (CardinoSerice Chaponics)											
Constituent (mg/m3)	Risk/HI	Unit Risk (mg/m ³) ⁻¹	RAGS F	Commercial Building Modelled Indoor Air Concentration										
				(mg/m3)										
Trichloroethene	Risk	4.0E-03	9.4E-02	2.3E-05	8.6E-09									

INCREASED LIFETIME CANCER RISK AND HAZARD INDEX CALCULATION SUBSURFACE TRENCH

Calculation of Hazard Index (non-carcinogenic endpoints)

Constituent (mg/m3)	Risk/HI	Inhalation Tox	RAGS F	Background	Background	Subsurface Trench		
		(mg/m³)		Inhalation	Inhalation	Modelled Indoor Air	INHALATION HI	
				Concentration	Concentration	Concentration		
				Percentage of RfC (%)	(mg/m3)	(mg/m3)		
Trichloroethene	HI	2.0E-03	1.8E-02	10%	2.0E-04	5.4E-06	5.4E-05	
1,1-dichloroethene	HI	2.0E-01	1.8E-02	N/A	N/A	1.6E-07	1.4E-08	

Calculation of Increased Lifetime Cancer Risk (carcinogenic endpoints)

Constituent (mg/m3)	Risk/HI	Unit Risk (mg/m ³) ⁻¹	RAGS F	Subsurface Trench	
				Modelled Indoor Air	INHALATION RISK
				Concentration	
				(mg/m3)	
Trichloroethene	Risk	4.0E-03	7.8E-03	5.4E-06	1.7E-10

© JBS&G

JBS&G Australia Pty Ltd 100 Hutt Street Adelaide SA 5000

P: 08 8431 7113 ACN: 100 220 479

This document is and shall remain the property of JBS&G. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Document Distribution

Rev No.	Copies	Recipient	Date
Rev0 (FINAL)	1x electronic PDF	Environment Protection Authority South Australia Ms Shannon Thompson	21 May 2021

Document Status

Doy No.	Author	Reviewer	Approved for Issue				
Rev No.		Name	Name	Signature	Date		
Rev0 (FINAL)	Kate Lough	Will Ellis	Will Ellis		21 May 2021		

www.jbsg.com.au