

APPENDIX A SUMMARY OF JOHNSON AND ETTINGER VAPOUR INTRUSION MODELS

Indoor Air Concentrations above Basements

Approach

The concentration of volatile COPCs (derived from a subsurface source) in floors above the basement (the commercial properties on the ground floor and residential units on the first-floor) is difficult to model due to the large number of variables which affect migration from the basement air to indoor air and between floors.

Multi-storey buildings may consist of a range of different building types which include:

- Single family homes with two or more storeys;
- Multi-family dwellings such as units in low-rise developments (including townhouses) and high-rise developments;
- Mixed commercial and residential developments (multi family units); and
- Non-residential buildings of varying sizes and uses (including retail, commercial, business and school use).

In the case of multi-family dwellings, these may consist of units or flats on one level or over many levels which may include low-rise and high-rise buildings. The problem of vapour migration in the buildings is complex due to the partition wall between units as well as the size of the building air envelope. Other key influences include adjacent units, stairwell doors, garbage chutes, elevator shafts, electrical and plumbing ducts, ventilation shafts (air conditioning) and windows. All of these factors vary between buildings and constructions (including the age of the construction) and modelling vapour migration in a multi-storey building is very complex and difficult. It is even more difficult when the proposed building is not defined.

However based on review of the available information a simple approach has been adopted to estimate concentrations within indoor air on floors located above a basement or on upper floors of a building constructed as slab on grade or on piers with a crawl-space as follows:

- Calculate the concentration in the lowest floor of the building, namely the basement or ground floor, using the most appropriate model for the building type considered; and
- Use an attenuation factor to estimate concentrations in floors above.

Attenuation Factor

An attenuation factor has been adopted to estimate a potential concentration in air within upper basement levels as well as within the ground floor and upper floors of the proposed building onsite. The attenuation factors adopted are:

 Adoption of a conservative method from Olson and Corsi (2001¹) that relates the concentration in air within an upper floor of a building with openings and good air

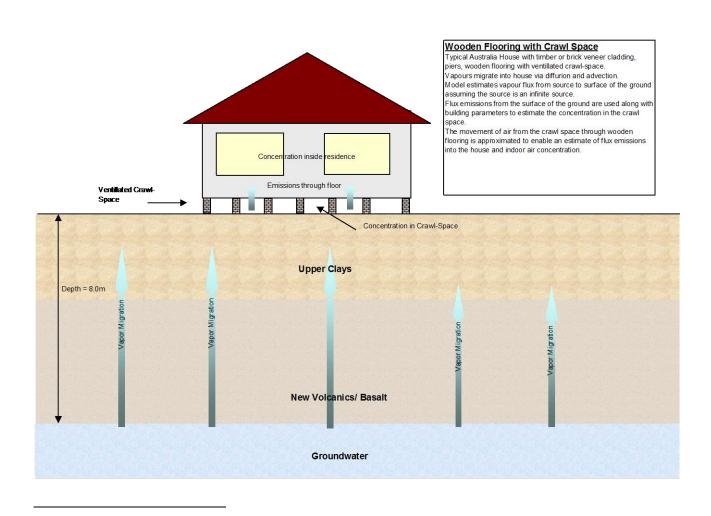
C:\Data\jackie\References etc\Models\Vapour Model Johnson & Ettinger 2007A.doc

¹ Olson, D.A., Corsi, R.L. 2001. Characterizing exposure to chemicals from soil vapor intrusion using a two-compartment model. Atmospheric Environment 35, 4201-4209.

Indoor Air Concentrations above Basements

exchanges such as a residential 2-storey home or in this case basement levels connected by open ramps. The attenuation factor adopted between the open basement levels is a factor of 2. That is the concentration in air within the basement level above the lowest level is ½ of that estimated using the J&E model (or other appropriate model) for the lowest level.

- Adoption of an attenuation factor of 10 to estimate the concentration in air within the ground floor or other upper floors of the proposed building. This factor has been adopted on the basis that the ground floor and subsequent floors are not well connected with large openings. The attenuation factor relates the concentration in the ground floor (1/10th) to the estimated air concentration in the basement level directly below the ground floor. The 10 fold attenuation factor used in this assessment is derived from a number of sources as follows:
 - Data collected by Olson and Corsi (2001) based on tracer experiments within a multistorey home (with internal stairway access) indicates that the concentration within the first-floor is approximately 10 times lower than the concentration within the basement.
 - Review of the transfer of tobacco smoke between apartments within multi-storey buildings (between levels and across floors) indicated (CEE, 2004²) that the transfer of air between floors of a multi-floor building was 2% for the lower floors, 7% for the middle floors and 19% for the upper floors. The trend was associated with the thermal stack effect during the heating season. During this period, warmer air inside the building is less dense than the outside air resulting in cold air from outside entering the lower portion of the building, rising and exiting through the upper floors. Hence the lower floors tend to get most of the air exchange from outside and upper floors get a more significant air exchange from floors beneath. When evaluating vapour migration from a subsurface source, the migration into the ground floor is considered more significant than outside air. Hence concentrations within the first-floor above the ground floor are expected to be diluted with outdoor air resulting in lower concentrations between 2% and 7% of the lower floors.
 - Review of radon simulation results for a range of multistorey buildings (Fang J.B and Persily A.K., 1995³) indicates that under a range of temperature and wind conditions the concentration difference between the basement and first floors was between a factor of 0 and 100. A 10-fold factor between concentrations within the basement and the first-floor would provide a conservative estimation of first floor concentrations (derived from ground floor or basement concentrations) under most conditions.


² CEE, 2004. Reduction of Environmental Tobacco Smoke Transfer in Minnesota Multifamily Buildings Using Air Sealing and Ventilation Treatments, Center for Energy and Environment, November 2004, CEE/TR04-1 MF.

³ Fang J.B. and Persily A.K, 1995. Airflow and Radon Transport Modelling in Four Large Buildings. ASHRAE Transactions 1995 Volume 101 Part 1. American Society of Heating, Refrigeration and Air-Conditioning Engineers.

Introduction

There are a number of models available for estimating potential concentrations of chemicals within the indoor air environment associated with the migration from a subsurface source. Most of these models are simple and have been developed for houses constructed with no flooring or on concrete slabs both with and without underground basements (which are more typical in the US). The model available for the assessment of houses constructed with piers, crawl-spaces and wooden floors is derived from Turczynowicz (2002¹).

The model is used to assess vapour intrusion indoors only and assumed that the source is nondepleting.

Conceptual Model

¹ Turczynowicz L., 2002. Establishing Health-Based Investigation Levels for benzene, toluene, ethylbenzene, xylenes, naphthalene and aromatic and aliphatic ≤EC16 TPH fractions. Site Contamination Technical Workshop, Adelaide 13 to 15th May 2002

Equations

The model presented in Turczynowicz (2002) is relevant to the assessment of finite sources (in this case shallow soil sources) and is based on subsurface migration as described by the model presented by Jury et al (1983) with additional equations applied to concentrations within the crawl-space and indoor air. The potential migration of vapours from the infinite shallow groundwater source have been directly measured and the subsurface migration model refined to match measured vapour emissions. The equations presented for migration into a crawl-space and indoor air presented by Turczynowicz can then be used assuming an infinite source.

The model is designed to estimate indoor air concentrations (and subsequent inhalation exposures) associated with the movement of volatile subsurface soil contaminants via a crawl-space into a brick veneer building with piers and wooden flooring. The model considers movement into the crawl-space, subsequent dilution by crawl-space ventilation and movement into indoor air through floor, wall and roof spaces. The model considers volatile sinks and sources, indoor air ventilation and degradation of the volatiles in indoor air.

The equations presented by Turczynowicz (2002) are a summary of the equations presented by Robinson (2000) and Turczynowicz and Robinson (2001). The soil transport and soil flux equations presented are based on Jury and are relevant to the assessment of finite sources. While an infinite source solution to the Jury equations is available, they have not been used in this assessment. In a number of off-site residential areas which overly potential dissolved phase impacts (assumed to be infinite sources), direct measurement of emission fluxes has been undertaken. However the highest concentration detected during sampling was from the soil gas measurements therefore have been used as the source concentrations during calculations. Turczynowicz (2002) presents the following equations for crawl-space transportation and dwelling transportation:

$$V_{cs} \bullet \left[\frac{\partial C_{cs}}{\partial t} + \mu a \bullet C_{cs} \right] + V_{cs} \bullet X_{cs} \bullet C_{cs} = A \bullet J_{cs} \qquad \dots \text{Equation CS1}$$

$$V_{D} \bullet \left[\frac{\partial C_{D}}{\partial t} + \mu a \bullet C_{D}\right] + V_{D} \bullet X_{D} \bullet C_{D} + s \bullet C_{D} = Q_{CD} \bullet C_{cs} \qquad \dots \text{Equation CS2}$$

Where

- V_x = volume of crawl-space (cs) and dwelling (D) with plan area A (in m³, area in m²);
- C_x = concentration in crawl-space (cs) and dwelling (D) (μ g/m³)
- $\mu a = volatile degradation rate in air (per day)$
- X_x = air exchange rate for crawl-space (cs) and dwelling (D) (per day)
- s = total sinks assumed to be inhalation by occupants (2 adults and 1 child) (m^3/day)
- J_{cs} = emission flux entering crawl-space (μ g/m²/day), refer to Equation CS5
- Q_{CD} = volumetric flow rate of air from crawl-space to indoor air via floor, walls and ceiling space (m³/day)

The air exchange rate within the crawl-space is derived from studies undertaken on six homes in Melbourne where rate varies from 201.6 to 585.6 per day for brick veneer and 556.8 to 2085.6 per day for well ventilated weatherboard (Delsante et al, 1998²). As the data is limited a conservative value relevant for more closed in crawl-space is set at 10% of the lower value (ie 20.2 per day).

Assuming an infinite source and steady-state emissions, then Equations 1 and 2 can be simplified to the following equations that can be used to calculate concentrations within the crawl-space and indoor air:

$$C_{cs} = \frac{A \bullet J_{cs}}{V_{cs} \bullet (\mu a + X_{CS})} \qquad (\mu g/m^3) \qquad \dots Equation CS3$$

$$C_D = \frac{Q_{CD} \bullet C_{cs}}{V_D \bullet (\mu a + X_D) + s} \qquad (\mu g/m^3) \qquad \dots Equation CS4$$

The emissions flux from the surface of the ground can be measured, however it is is also calculated suing the following:

$$J_{cs} = \frac{C_{source} \bullet D_T^{eff} \bullet A}{L_T} \qquad \mu g/s \qquad \dots Equation CS5$$

Where

 C_{source} = vapour concentration at the source, refer to Equations VS1 to VS5 (µg/cm³). $D_T^{\text{eff.}}$ = total overall effective diffusion coefficient. (cm²/s) Refer to Equations D1 and D2 L_T = separation distance between the source and the building (cm) A = area for the emission (cm²)

C:\Data\jackie\References etc\Models\Vapour Model Crawl-Space.doo

² Delsante A., Chan C. Threlfall G., Williamson T and Olweny M., 1998. Further measurements of Ventilation Rates in the Sub-Floor Spaces of Houses with Suspended Timber Floors. Environmentally Responsible Housing for Australia, Proceedings of the ARC/NAFI Research Seminar.

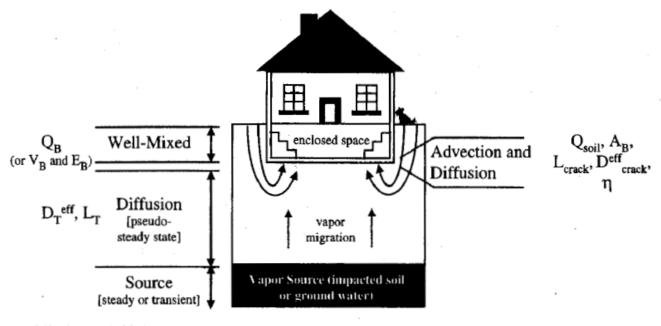
Delsante A., Chan C. Threlfall G., Williamson T and Olweny M., 1998. A Progress Report on the Measurement of Ventilation Rates in Sub-floor Spaces of Houses with Suspended Timber Floors. Environmentally Responsible Housing for Australia, Proceedings of the ARC/NAFI Research Seminar

Model Assumptions

The following represent the major assumptions/limitations of the crawl-space model.

- A building constructed with a sub-surface crawl-space is also assumed to have residential areas on the ground floor of the building. It is considered unlikely that a subsurface crawlspace would be used for residential purposes as the majority of the area would be exposed soils. In the event that such an area is converted to a residential area, then it would be expected that flooring and walls would be constructed making the exposure scenario more like that assessed for a building with concrete flooring and subsurface basement.
- 2. Diffusion dominates vapour transport between the source of contamination and the building zone of influence.
- 3. All soil properties in any horizontal plane are homogeneous.
- 4. The contaminant is homogeneously distributed within the zone of contamination.
- 5. The aerial extent of contamination is greater than that of the building floor in contact with the soil.
- 6. Vapour transport occurs in the absence of convective water movement within the soil column (i.e., evaporation or infiltration), and in the absence of mechanical dispersion.
- 7. The model does not account for transformation processes (e.g., biodegradation, hydrolysis, etc.).
- 8. The crawl-space and building ventilation rates are constant values.

Use of the crawl-space model as a first-tier screening tool to identify sites needing further assessment requires careful evaluation of the assumptions listed in the previous section to determine whether any conditions exist that would require further investigation. If the model is deemed applicable at the site, care must be taken to ensure reasonably conservative and self-consistent model parameters are used as input to the model. Considering the limited site data typically available in preliminary site assessments, the model can be expected to predict only whether or not a risk-based exposure level will be exceeded at the site. Precise prediction of concentration levels is not possible with this approach.



Introduction

The potential concentration of volatile chemicals inside a building constructed on a concrete slab with or without a sub-surface basement has been estimated using the Johnson & Ettinger Model (USEPA 2003¹). This model is consistent with the Johnson & Ettinger equations (1991²) recommended in the Soil Screening Guidelines (USEPA, 1996³) and the Risk Based Corrective Action at Petroleum Release Sites (ASTM, 2002⁴).

The model is used to assess vapour intrusion indoors only and assumed that the source is non-depleting.

Conceptual Model

(from Johnson and Ettinger 1991)

¹ USEPA, 2003. User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings. June 2003.

² Johnson, P.C. and Ettinger, R.A. 1991. "Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapours Into Buildings". Environmental Science and Technology, Vol 25 (8), 1991, pp.1445-1452.

³ USEPA 1996. Soil Screening Guidance. Publication 9355.4-23, July 1996

⁴ ASTM, 2002. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. ASTM E 1739-95 (2002)

Equations

The steady-state vapour-phase concentration of a contaminant inside a building ($C_{building}$) is calculated by applying the Johnson and Ettinger model assuming a steady-state mass transfer (i.e., infinite). This is calculated using Equation JE1.

$$C_{indoor} = C_{source} \bullet \alpha$$

... Equation JE1

Where

α

 C_{indoor} = the steady-state vapor-phase concentration of a contaminant inside a building (µg/m³)

 C_{source} = vapour concentration at the source (μ g/m³), refer to equations VS1 to VS5 (as relevant).

The attenuation factor is calculated using the following:

$$\alpha = \frac{\left[\frac{D_T^{eff} \bullet A_B}{Q_{building} \bullet L_T}\right] \bullet \exp\left[\frac{Q_{soil} \bullet L_{crack}}{D^{crack} \bullet A_{crack}}\right]}{\left[\exp\left[\frac{Q_{soil} \bullet L_{crack}}{D^{crack} \bullet A_{crack}}\right] + \left[\frac{D_T^{eff} \bullet A_B}{Q_{building} \bullet L_T}\right] + \left[\frac{D_T^{eff} \bullet A_B}{Q_{soil} \bullet L_T}\right] \bullet \exp\left[\frac{Q_{soil} \bullet L_{crack}}{D^{crack} \bullet A_{crack}}\right]^{-1}\right]}$$
Equation JE2

Where:

vvii010.	
D_T^{eff} .	= total overall effective diffusion coefficient. Refer to Equations D1 and D2.
A _B	= area of the enclosed space below the ground level which will vary depending on whether the building has a basement below the ground or not (cm^2) .
Q _{building} .	= building ventilation rate which is calculated using building parameters and air exchange rate (cm^3/s). Refer to Equation JE3.
LT	= separation distance between the source or soil gas measurement and the building (cm).
Q _{soil} .	 volumetric flowrate of soil gas into the enclosed space. This represents the convective flow of vapours into a building though cracks in the floor and walls. It incorporates pressure driven flows and a default value of 5 L/min is recommended (2003), however it can be calculated using Equation JE5.
L _{crack} D ^{crack} A _{crack}	 = enclosed space foundation or slab thickness (cm). = effective diffusion coefficient through the cracks (cm²/s). = area of total cracks which varies depending on whether there is a basement or not (cm²), refer to Equation JE4.

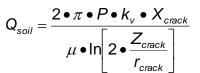
The building ventilation rate is calculated using Equation JE3 for the building dimensions representing the living space of the building. It assumes that the total air volume entering the structure is mixed and that the vapour entering the structure is instantaneously and homogeneously distributed.

$$Q_{building} = \frac{(L_B \bullet W_B \bullet H_B \bullet ER)}{3600} \qquad \dots \text{Equation JE3}$$

Where:

 $\begin{array}{ll} L_B & = \text{length of building, (cm)} \\ W_B & = \text{width of building, (cm)} \\ H_B & = \text{height of building, (cm)} \\ ER & = \text{air exchange rate, (per hour)} \\ 3600 & = \text{conversion from hours to seconds} \end{array}$

$$A_{crack} = n \bullet AB$$


$$AB = L_{B} \bullet W_{B} + (2 \bullet L_{B} \bullet L_{b} + 2 \bullet W_{B} \bullet L_{b})$$
 ...Equation JE4

Where:

AB= area of enclosed space below ground, (cm^2) n= ratio of crack area to total area (unitless) A_{crack} = total crack area, (cm^2) L_h = depth below ground, (cm)

The volumetric flow rate of soil gas into the building is calculated using Equation JE5. This represents the advective/convective flow rate of contaminant vapours in soil surrounding the building via the cracks in the building floor and walls. It incorporates pressure driven flows into the building that may be associated with wind effects on the structure, stack effects due to heating or an unbalanced mechanical ventilation. This is of particular importance where a basement is present and where heating /ventilation effects are of significance.

Tracer testing of buildings where advection is the primary mechanism for intrusion into the building suggested a typical range for Qsoil from 1 to 10 L/min, with 5 L/min selected as a default by the USEPA (2003). The equation represents potential openings for soil vapour entry into a building. These openings include floor/wall joints associated with floating concrete slabs or a perimeter drain /sump system. The soil vapour permeability used is that for the type of material immediately under the slab.

... Equation JE5

Where:

vvnere.	
Ρ	= pressure differential between the soil surface and the enclose space,
	(g/cm.s ²) which may range from negligible (0.001-20Pa, or 0.0001 to 2
	g/cm.s ²)
k_v	= soil vapour permeability, (cm ²), calculated based on soil type benath slab as
	per USEPA 2003
X _{crack}	= floor-wall seam perimeter, (cm)
μ	= viscosity of air, (g/cm.s)
Z_{crack}	= crack depth below ground level, (cm)
r _{crack}	= equivalent crack radius, (cm), refer to USEPA 2003 for approach.

However, for buildings constructed as slab-on-grade in climates where the potential for pressure differences to be driven by long term heating or unbalanced ventilation systems, the potential for pressure driven flows (advection) is considered negligible, consistent with the approach adopted in the ASTM guidance (2002). This results in Qsoil to be essentially negligible and hence the attenuation factor is simplified and can be calculated using the following (as per ASTM 2002):

$$\alpha = \frac{\left[\frac{D_{T}^{\text{eff}} / L_{T}}{ER \bullet L_{B}}\right]}{\left[1 + \left[\frac{D_{T}^{\text{eff}} / L_{T}}{ER \bullet L_{B}}\right] + \left[\frac{D_{T}^{\text{eff}} / L_{T}}{(D^{\text{crack}} / L^{\text{crack}}) \bullet \eta}\right]}\right]$$

Equation JE6

Where:

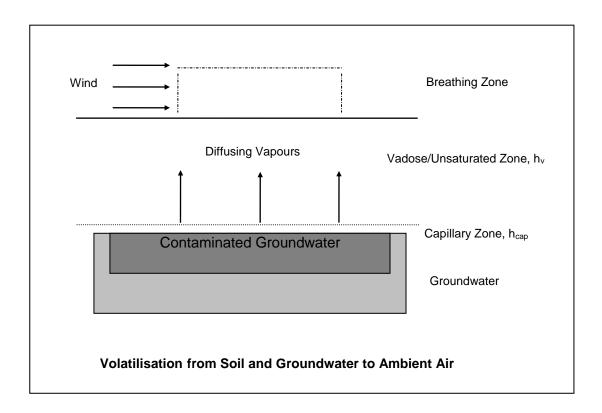
vvii010.	
D_T^{eff} .	= total overall effective diffusion coefficient. Refer to Equations D1 and D2.
L _B	= enclosed-space volume: infiltration area ratio (cm).
ER	= enclosed-space air exchange rate (1/sec).
LT	= separation distance between the source or soil gas measurement and the
	building (cm).
L _{crack}	= enclosed space foundation or slab thickness (cm).
L _{crack} D ^{crack}	= effective diffusion coefficient through the cracks (cm ² /s).

Model Assumptions

The following represent the major assumptions/limitations of the J&E Model.

- 1. Contaminant vapours enter the structure primarily through cracks and openings in the walls and foundation.
- 2. Convective transport occurs primarily within the building zone of influence and vapour velocities decrease rapidly with increasing distance from the structure.
- 3. Diffusion dominates vapour transport between the source of contamination and the building zone of influence.
- 4. All vapours originating from below the building will enter the building unless the floors and walls are perfect vapour barriers.
- 5. All soil properties in any horizontal plane are homogeneous.
- 6. The contaminant is homogeneously distributed within the zone of contamination.
- 7. The aerial extent of contamination is greater than that of the building floor in contact with the soil.
- 8. Vapour transport occurs in the absence of convective water movement within the soil column (i.e., evaporation or infiltration), and in the absence of mechanical dispersion.
- 9. The model does not account for transformation processes (e.g., biodegradation, hydrolysis, etc.).
- 10. The soil layer in contact with the structure floor and walls is isotropic with respect to permeability.
- 11. Both the building ventilation rate and the difference in dynamic pressure between the interior of the structure and the soil surface are constant values.

Use of the J&E Model as a first-tier screening tool to identify sites needing further assessment requires careful evaluation of the assumptions listed in the previous section to determine whether any conditions exist that would render the J&E Model inappropriate for the site. If the model is deemed applicable at the site, care must be taken to ensure reasonably conservative and self-consistent model parameters are used as input to the model. Considering the limited site data typically available in preliminary site assessments, the J&E Model can be expected to predict only whether or not a risk-based exposure level will be exceeded at the site. Precise prediction of concentration levels is not possible with this approach.


Outdoor Air and Excavations

Introduction

There are a number of models available for estimating potential concentrations of chemicals within the outdoor air environment associated with the migration from a subsurface source. Limited guidance is available for the estimation of concentrations in an excavation, hence the outdoor model adopted has also been utilised for calculations of concentrations within an excavation. The estimation of concentrations in outdoor air can be undertaken using two different methodologies outlined in the Soil Screening Guidelines (USEPA, 1996¹) and the Risk Based Corrective Action at Petroleum Release Sites (ASTM, 2002²).

The model is used to assess vapour intrusion indoors only and assumed that the source is nondepleting.

Conceptual Model

C:\Data\jackie\References etc\Models\Vapour Model Crawl-Space 2007A.doc

¹ USEPA 1996. Soil Screening Guidance. Publication 9355.4-23, July 1996

² ASTM, 2002. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. ASTM E 1739-95 (2002)

Outdoor Air and Excavations

Equations

The relevant equations associated with the estimation of outdoor air concentrations based on the approach outlined in the USEPA document "Soil Screening Guidance" (1996 and Supplement 2001 Exhibit D-3). This model uses air dispersion models to provide an estimate of potential dispersion of emissions above the ground as presented below.

$$C_o = \frac{J_S}{Q/C \bullet 10^{-9}} \qquad \dots Equation O1$$

Where:

C_{o}	= Outdoor air concentration (μ g/m ³)
J_{S}	= Contaminant flux from the surface of the ground (measured) (g/s/m ²)
Q/C	= Dispersion term calculated for area (g/s/m ² per kg/m ³)
10 ⁻⁹	= Units conversion to from kg/m ³ to μ g/m ³

$$Q/C = 11.91 \cdot \exp(\frac{(\ln(Acres) - 18.4385)^2)}{209.7845})$$
Equation O2

Where:

Q/C = Dispersion term calculated for area (g/s/m² per kg/m³) based on climates similar to Los Angeles which is considered relevant for much of Australia, however for other areas, relevant parameters are selected.
 Acres = Area of the source outside (acres)

A simpler approach more commonly used for small subsurface sources is the outdoor model presented in the ASTM (2002) guidance. Outdoor air concentrations have been estimated using a simple box model, which accounts for some atmospheric mixing. The concentration of volatile contaminants within the breathing zone of outdoor air has been estimated using Equation O3.

$$C_{outdoor} = C_{\rm S} \bullet VF$$
 (mg/m³) ...Equation O3

Where:

 C_s = concentration at the source (mg/m³)

VF = volatilisation factor calculated for emissions from the source to air, refer to Equation O4.

As noted with the indoor air model, the vapour phase concentration at the source can be estimated using the following relationships:

 Where soil gas data is available and relevant to the quantification of vapour migration, the measured soil gas concentration is considered to be the concentration at the source, with migration modelled through overlying soils (from point of measurement to the surface); and

Outdoor Air and Excavations

Where no soil gas data is available, the concentration at the source is based on theoretical
partitioning from the groundwater or soil source, as presented in Equations VS1 to VS5 (as
required).

The volatilisation factor is calculated using the following:

$$VF = \frac{D_s^{\text{eff}} \bullet W}{U_{air} \bullet \delta \bullet L_{GW}} \qquad \qquad \text{....Equation O4}$$

where:

U _{air}	= Wind speed above the ground surface in the ambient mixing zone (cm/s)
$\delta_{\! a i r}$	= Ambient air mixing zone height (cm)
L _{GW}	= Depth to groundwater (= height of capillary zone, h_{cap} , + height of
	unsaturated zone, h_v) (cm)
W	= Width of source area parallel to wind or groundwater flow direction (cm) (i.e. width and breadth of breathing zone)
D_{ws}^{eff}	= Effective diffusion coefficient between the groundwater and soil surface

 (cm^{2}/s) , refer to Equations D1 and D2.

Emissions into Excavation or Trench

Volatile COPC have the potential to accumulate within trenches or excavations in areas where excavations intersect or are located directly above contaminated soil or groundwater. Workers have the potential to be exposed to these COPC when working in or near the trench or excavation. It is unlikely that workers would spend an entire workday within any excavation or trench, and any exposure near the trench or excavation would result in exposure to significantly lower concentrations due to dilution.

Concentrations within an excavation have been estimated using the ASTM (2002) outdoor air model presented above, however the depth to the source is adjusted to reflect to depth from the base of the excavation to the source, the dimensions of the excavation are used and the wind speed is adjusted to reflect a more confined space scenario. A typical excavation is estimated as $1m \times 10m \times 1$ to 1.5m depth (ANZECC 1992³ notes the depth of most services is between 1 to 2m below ground surface). A wind speed considered representative of a more confined space within an excavation is 0.5 m/s.

³ ANZECC 1992. Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites. Australian and New Zealand Environment and Conservation Council, National Health and Medical Research Council, January 1992.

Vapour Phase Partitioning and Diffusion

Introduction

The assessment of vapour migration and vapour intrusion into buildings can be undertaken using a number of different models depending of the building type considered. While the model and approach adopted for the different building types differs, the initial processes associated wit

the source) is the same. In addition, all the models currently used consider diffusion as a key mechanism for vapour phase transport through the subsurface. The methodology for estimating vapour diffusion is the same in each model.

The vapour phase concentration at the source can be estimated using the following relationships:

- Where soil gas data is available and relevant to the quantification of vapour intrusion, the measured soil gas concentration is considered to be the concentration at the source, with diffusion modelled through overlying soils (from point of measurement to the surface of building); and
- Where no soil gas data is available, the concentration at the source is based on theoretical partitioning from the groundwater or soil source, see below, with subsequent diffusion modelled through the overlying soils.

The following presents the equations (Johnson et al 1990¹ and Johnson and Ettinger 1991²) used to estimate the vapour phase concentration directly above the source and diffusion through overlying soils.

Vapour Phase-Partitioning

Groundwater Source

For a groundwater source, it is assumed that the vapour phase concentration directly above the groundwater is in equilibrium with the groundwater and the concentration is related to the groundwater concentration by Henry's Law:

$$C_{\text{source}} = C_{\text{water}} \bullet HL$$
 (g/cm³) ...Equation VS1

Where:

C_{water} = concentration in water (at top of groundwater, g/cm³) HL = Henry's Law constant (unitless)

C:\Data\jackie\References etc\Models\Johnson & Ettinger Vapour Model.doc

¹ Johnson, P.C., Hertx M.B. and Beyers D.L., 1990. Estimates for Hydrocarbon vapour emissions resulting from service station remediation and buried gasoline-contaminated soils. In: Petroleum Contaminated Soils, Vol. 3. Lewis Publishers, Michigan.

² Johnson, P.C. and Ettinger R.A., 1991. Heuristic model for predicting the intrusion rate of contaminant vapours into buildings. Environ. Sci. Technology, Volume 25: 1445-1452.

Vapour Phase Partitioning and Diffusion

The concentration within the vapour phase will increase proportionally with the concentration in groundwater (at the top of the groundwater table), until it reaches saturation. At some point the saturated vapour phase concentration will be reached, which is an upper limit of the vapour phase concentration. The saturated vapour phase concentration is estimated using the following relationship:

$$SVPC = \frac{VP \bullet MW}{T \bullet 62361}$$
 (g/cm³)

... Equation VS2

Where:

VP	= vapour pressure of the contaminant (mmHg)
MW	= molecular weight (g/mol)
Т	= soil temperature (K)
62361	= conversion (mmHg/K* cm ³ /mol)

Soil Source

For a soil source, it is assumed that the vapour phase concentration directly above the soil is in equilibrium with the source and the concentration is related to the soil concentration by the following:

$$C_{source} = \frac{C_{soil} \bullet H' \bullet \rho_{S}}{\theta_{ws} + k_{d} \bullet \rho_{S} + H' \bullet \theta_{as}}$$
(g/cm³) ...Equation VS3

where:

Csoil H'	 Concentration in soil source zone (g/g) Henry's Law constant (unitless)
$ ho_{ m S}$	= Soil bulk density (g soil/cm ³ soil)
θ_{ws}	= Volumetric water content in soil source zone (cm ³ water/cm ³ soil)
$ heta_{as}$	= Volumetric air content in soil source zone (cm ³ air/cm ³ soil)
K _d	= Soil-water partition coefficient ($cm^3 air/g soil$) = $K_{oc} x f_{oc}$
Koc	= Soil organic carbon partition coefficient, chemical specific (cm ³ /g)
f _{oc}	= Soil organic carbon fraction (unitless)

The equilibrium vapour phase concentration is proportional to the soil concentration up to the soil saturation limit (C_{sat}), which is calculated using the following (with the saturated vapour phase calculated using Equation VS2):

$$C_{sat} = \frac{S}{\rho_s} \bullet [H' \bullet \theta_{as} + \theta_{ws} + K_d \bullet \rho_s]$$

(mg/kg)

... Equation VS4

where:

S = Pure component solubility in water (mg/L)

Vapour Phase Partitioning and Diffusion

When residual phase is present the vapour concentration is independent of the soil concentration but proportional to the mole fraction of the individual component of the residual phase mixture as below.

Vapour Phase above Free Phase (NAPL)

Where free phase or NAPL is present at the top of the groundwater or within a soil profile, the concentration of vapour directly above the NAPL is estimated using Raoult's Law:

$$C_{\text{NAPLsource}} = \frac{x_i \bullet P_i(T_{\text{S}}) \bullet MW}{1000 \bullet R \bullet T_{\text{S}}} \qquad \dots \text{Equation VS5}$$

where:

Xi	= mole fraction of chemical in NAPL (mol/mol);
$P_i(T_S)$	= vapour pressure of chemical at average soil temperature (atm);
M_w	= molecular weight (g/mol);
R	= Universal Gas Constant, 0.08206 L (atm)mol ⁻¹ K ⁻¹ ;
Ts	= Average soil temperature (°K);
1000	= Units conversion factor (L/ml).

Effective Diffusion

The total overall effective diffusion coefficient can be calculated for n different soil layers between the source and the enclosed floor (including the capillary fringe where relevant). This is estimated using Equation D1.

$$D_{T}^{\text{eff}} = \frac{L_{T}}{\sum_{i=1}^{n} L_{i} / D_{i}^{\text{eff}}} \qquad \dots \text{Equation D1}$$

$$L_{T}$$
 = separation distance between the source and the building (cm)

 L_i D_i^{eff} = effective diffusion coefficient across soil layer i (cm^2/s) – refer to Equation D2

$$D_i^{eff} = D_a \bullet \left[\frac{\theta_{ai}^{3.33}}{n_i^2}\right] + \left[\frac{D_w}{H'}\right] \bullet \left[\frac{\theta_{wi}^{3.33}}{n_i^2}\right] \qquad \dots \text{Equation D2}$$

- = diffusivity in air, chemical specific (cm^2/s) D_a
- = soil air-filled volume of layer i (cm^{3}/cm^{3}) θ_{ai}
- = soil total porosity of layer i (cm^{3}/cm^{3}) ni = $1 - \rho_b / \rho_s$ $\rho_{\rm b}$ = soil dry bulk density, (g/cm³)

 ρ_s = soil particle density, (g/cm³) - typically 2.65

- = diffusivity in water, chemical specific (cm^2/s) D_w
- = soil water-filled volume of layer i, (cm^{3}/cm^{3}) θ_{wi}

APPENDIX B MODELLING INPUT AND OUTPUT SPREADSHEETS

VAPOUR PARTITIONING, EMISSION AND AIR DISPERSION MODEL FOR CONTAMINATED SOILS For Houses on Piers with Crawl-Spaces, migration from Infinite Source. Reference: Turczynowicz 2002

Site Specific Physical Input Parameters	Units	Abbrev.	Value	Comments
Thickness of Vadose Zone	[m]	d	1	Calculated from layers
Soil Temperature	[C]	Т	15	site-specific assumption
Vadose Zone Layer 1 Characteristics				CRC Care - Sand, Sandy Clay
Depth of Layer 1	[m]	vd1	1	1 m soil vapour bore beneath child care centre
Moisture Content	[cm ³ /g]	mocon	0.08	assumption for clays
Organic Carbon Fraction	-	foc	0.003	based on field data
Soil Bulk Density	[g/cm ³]	rhob	1.625	Estimated for clays
Density of Solids	[g/cm ³]	sd	2.65	site-specific assumption
Total Soil Porosity	[cm ³ /cm ³]	theta	0.39	1 - (rhob/sd)
Volumetric Water Content	[cm ³ /cm ³]	wacon	0.130	mocon*rhob
Volumetric Air Content	[cm ³ /cm ³]	acon	0.257	theta-wacon
Vadose Zone Layer 2 Characteristics				Sandy Clay
Depth of Layer 1	[m]	vd2	0	Typical depth from logs
Moisture Content	[cm ³ /g]	mocon2	0.26	site-specific assumption
Organic Carbon Fraction	-	foc2	0.003	based on field data
Soil Bulk Density	[g/cm ³]	rhob2	1.56	Estimated for fractured basalts
Density of Solids	[g/cm ³]	sd2	2.67	site-specific assumption
Total Soil Porosity	[cm ³ /cm ³]	theta2	0.42	1 - (rhob2/sd2)
Volumetric Water Content	[cm ³ /cm ³]	wacon2	0.406	mocon2*rhob2
Volumetric Air Content	[cm ³ /cm ³]	acon2	0.01	theta2-wacon2

Receptor Specific Input Parameters	Units	Abbrev.	Value	Comments
Building Characteristics				
Height of Building (internal)	[m]	bheight	3	Default Value for type of building, CRC Care 2011
Width of Building	[m]	bwidth	12.5	Assume whole building above source
Length of Building	[m]	blength	25	Assume whole building above source
Area of Emission - Building Area	[m ²]	emarea	312.5	Default calculation assuming whole house is over source
Volume of Dwelling Space	[m ³]	bvolume	937.5	Calculated using building height and area as per Turczynowicz, 2002
Air Exchange Rate in Dwelling	[exch/day]	exchanges	24	assumed 2 per hour for commercial
Height of Crawl Space	[m]	cheight	0.30	Approximate depth of CCC crawl space
Volume of Crawl Space	[m ³]	cvolume	93.75	Calculated using crawl space height and area as per Turczynowicz, 2002
Air Exchange Rate in Crawl Space	[exch/day]	cexchanges	72	Calibrated value from soil vapour to crawl-space
Qcsd	[m³/day]	Qcsb	2242	911 m3/d for 127 m2 house - Turczynowicz 2002, based on Australian studies
Indoor Air Sinks	[m³/day]	Qs	0.0	Typical value from Turczynowicz 2002, based on 2 adults indoors
Outdoor Air Characteristics				
Length of Contaminated Area	[m]	length	20	site-specific assumption
Width of Contaminated Area	[m]	width	100	site-specific assumption
Wind Speed Outdoors	[m/s]	wspd	2.5	site-specific assumption
Height of Outdoor Mixing Zone	[m]	outboxh	1.5	Default Value

Chemical Specific Parameters	Water Solubility (mg/L)	MW (g/mol)	Koc (cm³/g)	Air Diffusion Coefficient (cm ² /s)	Water Diffusion Coefficient (cm ² /s)	Vapour Pressure (mmHg)	Henry's Law Constant (unitless)	Degradation Rate in Air (per day)
Trichloroethene	1280	131	60.7	0.0687	1.0E-05	69	0.403	0
Tetrachloroethene	206	166	94.9	0.0505	9.5E-06	18.5	0.724	0
cis-1,2-Dichloroethene	6410	96.9	39.6	0.0884	1.1E-05	201	0.167	0

Vapour Transport Calculations	Deff Layer 1 (cm²/s)	Deff Layer 2 (cm²/s)	Total Effective Diffusion (GW to surface) (cm ² /s)
Trichloroethene	4.94E-3	7.32E-6	4.94E-3
Tetrachloroethene	3.63E-3	3.80E-6	3.63E-3
cis-1,2-Dichloroethene	6.36E-3	1.95E-5	6.36E-3

Calculated Air Concentrations		Flux Emission Rate from Surface (ug/day/m ²)	Concentration in Crawl Space (ug/m³)	Concentration in Dwelling (µg/m³)	Crawl Space to indoor Air Attenuation Factor	Outdoor Air Concentration (µg/m³)
Trichloroethene	2000	8.5E+01	4.0E+00	3.9E-01	10.0	0.026
Tetrachloroethene	6.5	2.0E-01	9.4E-03	9.4E-04	10.0	0.0001
cis-1,2-Dichloroethene	280	1.5E+01	7.1E-01	7.1E-02	10.0	0.005

VAPOUR PARTITIONING, EMISSION AND AIR DISPERSION MODEL FOR CONTAMINATED GROUNDWATER Using USEPA Vapor Migration Guidance (2003), Johnson Ettinger Model

Site Specific Physical Input Parameters	Units	Abbrev.	Value	Comments
Depth of Top of Contaminated Aquifer (BGS)	[m]	d	3.5	Calculated from layers
Thickness of Capillary Fringe	[m]	cd	0.2	Estimated for Sandy Clay
Thickness of Vadose Zone	[m]	vd	3.3	Calculated from layers
Average Soil Temperature	[C]	Т	25	site-specific assumption
Vadose Zone Layer 1 Characteristics				CRC Care - Sand, Sandy Clay
Depth of Layer 1 from Foundations	[m]	vd1	2	Typical depth from logs
Moisture Content	[ml/g]	mocon	0.08	Estimated for CRC Care - Sand, Sandy Clay
Organic Carbon Fraction	-	foc	0.003	Estimated for CRC Care - Sand, Sandy Clay
Soil Bulk Density	[g/ml]	rhob	1.625	Estimated for CRC Care - Sand, Sandy Clay
Density of Solids	[g/ml]	sd	2.65	default
Total Soil Porosity	[ml/ml]	theta	0.39	1 - (rhob/sd)
/olumetric Water Content	[ml/ml]	wacon	0.130	mocon*rhob
Volumetric Air Content	[ml/ml]	acon	0.257	theta-wacon
Vadose Zone Layer 2 Characteristics				Sandy Clay
Depth of Layer 2 to Water Table	[m]	vd2	1.3	Typical depth from logs
Moisture Content	[ml/g]	mocon2	0.26	Estimated for Sandy Clay
Drganic Carbon Fraction	-	foc2	0.003	Estimated for Sandy Clay
Soil Bulk Density	[g/ml]	rhob2	1.56	Estimated for Sandy Clay
Density of Solids	[g/ml]	sd2	2.67	default
Total Soil Porosity	[ml/ml]	theta2	0.42	1 - (rhob2/sd2)
Volumetric Water Content	[ml/ml]	wacon2	0.406	mocon2*rhob2
Volumetric Air Content	[ml/ml]	acon2	0.010	theta2-wacon2
Capillary Fringe				
Volumetric Water Content	[ml/ml]	cfwacon	0.406	Value representative of capillary fringe, ASTM (2002)
Volumetric Air Content	[ml/ml]	cfacon	0.010	theta2-cfwacon

VAPOUR PARTITIONING, EMISSION AND AIR DISPERSION MODEL FOR CONTAMINATED GROUNDWATER Using USEPA Vapor Migration Guidance (2003), Johnson Ettinger Model

Receptor Specific Input Parameters	Units	Abbrev.	Value	Comments
Building Characteristics				Residential - Slab On Ground
Depth of Basement	[m]	basement	0	Depth of basement below ground level
Width of Building	[m]	bwidth	10	Assume whole building above source
Length of Building	[m]	blength	10	Assume whole building above source
Area of Emission - Building Area	[m ²]	emarea	100	Assume whole building above source
Foundation/wall thickness	[m]	fthick	0.1	Default Value BCA
Height of Room	[m]	boxh	2.4	Default Value for type of building, USEPA 2003
Hourly Volume Exchange of Fresh Air	[exch/hr]	exchanges	0.6	CRC CARE 2011 for residential
Fraction of Cracks in Walls and foundation	-	cracks	0.001	CRC CARE 2011
Qbuilding	[cm ³ /s]	Qb	40000	Calculated from building volume and exchange rate
Qsoil	[cm ³ /s]	Qs	83.33333333	Calculated from default of Qs:Qb (CRC Care 2010)
Ratio of Qs:Qb	-	Qs/Qb	0.005	Defaults are 0.005 (Res) and 0.001 (Comm) (CRC CARE)
Area of Cracks (ACrack)	[cm ²]	Ac	1000	Calculated from building area and crack ratio, USEPA 2003
Volumetric Water Content in foundation/wall cracks	[ml/ml]	fwacon	0.12	Default Value ASTM 1739-95
Volumetric Air Content in foundation/wall cracks	[ml/ml]	facon	0.26	Default Value ASTM 1739-95
Outdoor Air Characteristics				
Length of Contaminated Area	[m]	length	10	site-specific assumption
Width of Contaminated Area	[m]	width	10	site-specific assumption
Wind Speed Outdoors	[m/s]	wspd	2.5	site-specific assumption
Height of Outdoor Mixing Zone	[m]	outboxh	1.5	Default Value

VAPOUR PARTITIONING, EMISSION AND AIR DISPERSION MODEL FOR CONTAMINATED GROUNDWATER Using USEPA Vapor Migration Guidance (2003), Johnson Ettinger Model

Chemical Specific Parameters	Water Solubility (mg/L)	MW (g/mol)	Koc (cm³/g)	Air Diffusion Coefficient (cm²/s)	Water Diffusion Coefficient (cm ² /s)	Vapour Pressure (mmHg)	Henry's Law Constant (unitless)
Tetrachloroethene	206	165.83	1.07E+02	5.05E-02	9.46E-06	53.200	7.2E-01
Trichloroethene	1280.0	131.40	6.77E+01	6.87E-02	1.02E-05	72.50	4.03E-01
cis-1,2-dichloroethene	3500	96.95	3.55E+01	7.60E-02	1.13E-05	201.00	1.67E-01

Vapour Transport Calculations	Deff Layer 1 (cm ² /s)	Deff Layer 2 (cm ² /s)	Deff Foundations and Cracks (cm ² /s)	Deff Capillary Fringe (cm ² /s)	Total Effective Diffusion (cm ² /s) to indoor air
Tetrachloroethene	3.63E-3	3.80E-6	3.79E-3	3.80E-6	8.85E-6
Trichloroethene	4.94E-3	7.32E-6	5.15E-3	7.33E-6	1.70E-5
cis-1,2-dichloroethene	5.47E-3	1.94E-5	5.70E-3	1.95E-5	4.51E-5

Phase Partitioning Results	Dissolved Phase Concentration (mg/L)	Vapour Phase Concentration (g/cm ³)	Saturated Vapour Conentration (g/cm ³)	Free Phase Mole Fraction (mol/mol)	Concentration above Free Phase (g/cm ³)	Calculation Vapour Phase Concenration Adopted (g/cm ³)
Tetrachloroethene	0.00018	1.3E-10	4.7E-04			1.3E-10
Trichloroethene	0.47	1.9E-07	5.1E-04			1.9E-07
cis-1,2-dichloroethene	0.0581	9.7E-09	1.0E-03			9.7E-09

Calculated Air Concentrations (with advection)	Vapour Phase Concentration at Source (ug/m ³)	Vapour Phase Concentration at Source (mg/m ³)	JE Attenuation Coefficient (unitless)	Indoor Air Concentration (mg/m ³)	Indoor Air Concentration (μg/m³)
Tetrachloroethene	1.3E+02	1.3E-01	6.3E-07	8.23E-08	0.0001
Trichloroethene	1.9E+05	1.9E+02	1.2E-06	2.3E-04	0.23
cis-1,2-dichloroethene	9.7E+03	9.7E+00	3.2E-06	3.1E-05	0.03
,					

Calculated Air Concentrations ASTM Guidance (without advection)	Vapour Phase Concentration at Source (g/cm3)	Vapour Phase Concentration at Source (mg/m ³)	Emission Rate from Surface of Ground (g/s)	Indoor Air Concentration (mg/m ³)	Indoor Air Concentration (µg/m³)	Outdoor Air Concentration (µg/m ³)
Tetrachloroethene	1.3E-10	1.3E-01	3.3E-12	7.72E-08	0.0001	8.8E-08
Trichloroethene	1.9E-07	1.9E+02	9.2E-09	2.1E-04	0.21	2.5E-04
cis-1,2-dichloroethene	9.7E-09	9.7E+00	1.3E-09	2.6E-05	0.03	3.3E-05

Toxicity and Dermal Absorption Parameters

C = calculated from chronic value, Ch = chronic value adopted

Chemical				<u>Oral/Derr</u>	<u>nal Exposures</u>			
	Non- Threshold Slope Factor		Threshold Chronic TDI		Threshold Subchronic TDI		Dermal Permeability	Dermal Adsorption
	(mg/kg/day) ⁻¹	Ref	(mg/kg/day)	Ref	(mg/kg/day)	Ref	(cm/hr)	(Unitless)
Tetrachloroethene			1.40E-02	ADWG/WHO		-	4.81E-02	3.00E-02
Trichloroethene	7.80E-04	WHO	1.46E-03	WHO	1.46E-03	-	1.57E-02	3.00E-02
cis-1,2-dichloroethene		-	2.00E-03	USEPA 2010	3.00E-01	ATSDR	1.49E-02	3.00E-02
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-

Toxicity and Derma

C = calculated from chronic values

Chemical				nalation Expos	sures			Background	Intake (% TDI
	Inhalation Unit Risk		Threshold Chronic TC	Threshold Chronic TDI		Threshold Subchronic TC		Chronic Assessment	Subchronic Assessment
	(ug/m ³) ⁻¹	Ref	(mg/m ³)	(mg/kg/day)	Ref	(mg/m ³)	Ref	(%)	
Tetrachloroethene		-	2.00E-01		WHO	2.00E-01	-		10.00%
Trichloroethene	4.10E-06	US EPA	2.00E-03	4.10E-06	US EPA	2.00E-03	-	10.00%	10.00%
cis-1,2-dichloroethene		-	7.00E-03		USEPA 2010	7.90E-01	ATSDR		
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-

General Data/ Equation Exposure Parameters Exposure Frequency (EF) Exposure Duration (ED) Body Weight (BW) Averaging Time - NonThresh Averaging Time - Threshold Advection Exposure Time (ET) Fraction Inhaled from Contar Intake Factor = <u>ET*FI*EF*E</u> AT	nold (ATc) (ATn) minated Source (FI)			Units days/year years kg hours hours Y hr/day -	365 14 70 613200 122640 20 1 1.7E-01 8.3E-01	Inhal Exposure every day Exposure for 30 yea USEPA 1989 and C USEPA 2009 USEPA 2009 Time spent indoors (rs less childhood exp	Adult osure e spent in basement	
Inhalation Exposure Concen NonThreshold Risk = Inhalat Hazard Quotients = (Inhalatio Chemical	tion Exposure Conce on Exposure Concel Toxici	entration x Unit Ris	sk		Concentration	Daily E	xposure Inhalation	Calcula NonThreshold	ted Risk Chronic Hazard
	Innalation Unit Risk		Background Intake (% Chronic TC)	for Assessment (TC- Background)	in Indoor Air	Exposure Concentration - NonThreshold	Exposure Concentration - Threshold	Non i freshold Risk	Quotient
	$(m \sigma /m^{3})^{-1}$	$(m \sigma (m^{3}))$		$(m \sigma (m^3))$	$(m \sigma /m^{3})$				
	(mg/m ³) ⁻¹	(mg/m ³)		(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(unitless)	(unitless)
	(mg/m ³) ⁻¹					(mg/m ³)	(mg/m ³) TOTAL	1.6E-7	1.1E-1
Tetrachloroethene		2.0E-01	400/	2.0E-01	8.2E-08	(mg/m ³) 1.4E-08	(mg/m ³) TOTAL 6.9E-08	1.6E-7	1.1E-1 3.4E-7
Trichloroethene	(mg/m ³) ⁻¹	2.0E-01 2.0E-03	10%	2.0E-01 1.8E-03	8.2E-08 2.3E-04	(mg/m ³) 1.4E-08 3.8E-05	(mg/m ³) TOTAL 6.9E-08 1.9E-04	1.6E-7 1.6E-7	1.1E-1 3.4E-7 1.1E-1
	4.1E-03	2.0E-01 2.0E-03 7.0E-03		2.0E-01 1.8E-03 7.0E-03	8.2E-08 2.3E-04 3.1E-05	(mg/m ³) 1.4E-08 3.8E-05 5.2E-06	(mg/m ³) TOTAL 6.9E-08 1.9E-04 2.6E-05	1.6E-7 1.6E-7 	1.1E-1 3.4E-7 1.1E-1 3.7E-3
Trichloroethene		2.0E-01 2.0E-03		2.0E-01 1.8E-03	8.2E-08 2.3E-04	(mg/m ³) 1.4E-08 3.8E-05	(mg/m ³) TOTAL 6.9E-08 1.9E-04	1.6E-7 1.6E-7	1.1E-1 3.4E-7 1.1E-1
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03		2.0E-01 1.8E-03 7.0E-03	8.2E-08 2.3E-04 3.1E-05 -	(mg/m ³) 1.4E-08 3.8E-05 5.2E-06	(mg/m ³) TOTAL 6.9E-08 1.9E-04 2.6E-05 -	1.6E-7 1.6E-7 	1.1E-1 3.4E-7 1.1E-1 3.7E-3 -
Trichloroethene	4.1E-03 - -	2.0E-01 2.0E-03 7.0E-03 -	-	2.0E-01 1.8E-03 7.0E-03	8.2E-08 2.3E-04 3.1E-05 -	(mg/m ³) 1.4E-08 3.8E-05 5.2E-06	(mg/m ³) TOTAL 6.9E-08 1.9E-04 2.6E-05 -	1.6E-7 1.6E-7 	1.1E-1 3.4E-7 1.1E-1 3.7E-3
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 -		2.0E-01 1.8E-03 7.0E-03 - -	8.2E-08 2.3E-04 3.1E-05 - -	(mg/m ³) 1.4E-08 3.8E-05 5.2E-06 - - -	(mg/m ³) TOTAL 6.9E-08 1.9E-04 2.6E-05 - - -	1.6E-7 1.6E-7 - - -	1.1E-1 3.4E-7 1.1E-1 3.7E-3
Trichloroethene	4.1E-03 - - - - -	2.0E-01 2.0E-03 7.0E-03 - - -		2.0E-01 1.8E-03 7.0E-03 - -	8.2E-08 2.3E-04 3.1E-05 - - -	(mg/m ³) 1.4E-08 3.8E-05 5.2E-06 - - - - -	(mg/m ³) TOTAL 6.9E-08 1.9E-04 2.6E-05 - - - - -	1.6E-7 1.6E-7 - - -	1.1E-1 3.4E-7 1.1E-1 3.7E-3 - - -
Trichloroethene	4.1E-03 - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - -	- - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - -	8.2E-08 2.3E-04 3.1E-05 - - - -	(mg/m ³) 1.4E-08 3.8E-05 5.2E-06 - - - - - - -	(mg/m ³) TOTAL 6.9E-08 1.9E-04 2.6E-05 - - - - - - - -	1.6E-7 1.6E-7 - - - - - - - - -	1.1E-1 3.4E-7 1.1E-1 3.7E-3 - - - -
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - - - - -	- - - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - - - - -	8.2E-08 2.3E-04 3.1E-05 - - - - - -	(mg/m ³) 1.4E-08 3.8E-05 5.2E-06 - - - - - - - - - - - -	(mg/m ³) TOTAL 6.9E-08 1.9E-04 2.6E-05 - - - - - - - - - - -	1.6E-7 1.6E-7 - - - - - - - - -	1.1E-1 3.4E-7 1.1E-1 3.7E-3 - - - - - - - - - - - -
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - -	- - - - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	8.2E-08 2.3E-04 3.1E-05 - - - - - - - - -	(mg/m ³) 1.4E-08 3.8E-05 5.2E-06 - - - - - - - - - - - -	(mg/m ³) TOTAL 6.9E-08 1.9E-04 2.6E-05 - - - - - - - - - - - -	1.6E-7 1.6E-7 - - - - - - - - - - - - - - - -	1.1E-1 3.4E-7 1.1E-1 3.7E-3 - - - - - - - - - - - - -
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - -	- - - - - - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	8.2E-08 2.3E-04 3.1E-05 - - - - - - - - - - - - - - - - -	(mg/m ³) 1.4E-08 3.8E-05 5.2E-06 - - - - - - - - - - - - -	(mg/m ³) TOTAL 6.9E-08 1.9E-04 2.6E-05 - - - - - - - - - - - - -	1.6E-7 1.6E-7 - - - - - - - - - - - - - - - - -	1.1E-1 3.4E-7 1.1E-1 3.7E-3 - - - - - - - - - - - - -
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - - - -	- - - - - - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	8.2E-08 2.3E-04 3.1E-05 - - - - - - - - - - - - - - - - - -	(mg/m ³) 1.4E-08 3.8E-05 5.2E-06 - - - - - - - - - - - - -	(mg/m ³) TOTAL 6.9E-08 1.9E-04 2.6E-05 - - - - - - - - - - - - -	1.6E-7 1.6E-7 - - - - - - - - - - - - - - - - -	1.1E-1 3.4E-7 1.1E-1 3.7E-3 - - - - - - - - - - - - -
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	8.2E-08 2.3E-04 3.1E-05 - - - - - - - - - - - - - - - - - -	(mg/m ³) 1.4E-08 3.8E-05 5.2E-06 - - - - - - - - - - - - -	(mg/m ³) TOTAL 6.9E-08 1.9E-04 2.6E-05 - - - - - - - - - - - - -	1.6E-7 1.6E-7 - - - - - - - - - - - - - - - - -	1.1E-1 3.4E-7 1.1E-1 3.7E-3 - - - - - - - - - - - - -
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	8.2E-08 2.3E-04 3.1E-05 - - - - - - - - - - - - - - - - - -	(mg/m ³) 1.4E-08 3.8E-05 5.2E-06 - - - - - - - - - - - - -	(mg/m ³) TOTAL 6.9E-08 1.9E-04 2.6E-05 - - - - - - - - - - - - -	1.6E-7 1.6E-7 - - - - - - - - - - - - - - - - -	1.1E-1 3.4E-7 1.1E-1 3.7E-3 - - - - - - - - - - - - -
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	8.2E-08 2.3E-04 3.1E-05 - - - - - - - - - - - - - - - - - -	(mg/m ³) 1.4E-08 3.8E-05 5.2E-06 - - - - - - - - - - - - -	(mg/m ³) TOTAL 6.9E-08 1.9E-04 2.6E-05 - - - - - - - - - - - - -	1.6E-7 1.6E-7 - - - - - - - - - - - - - - - - -	1.1E-1 3.4E-7 1.1E-1 3.7E-3 - - - - - - - - - - - - -

Chronic Exposures							Exposure Parame		
General Data/ Equation	S			Units		Inhalat	ion Outdoors by	Adult	
Exposure Parameters									
Exposure Frequency (EF) Exposure Duration (ED)				days/year	365	Exposure every day			
Body Weight (BW)				years kg	14 70	Exposure for 30 year USEPA 1989 and CS		sure	
Averaging Time - NonThresho	old (ATc)			hours	613200	USEPA 1989 and CS USEPA 2009	1012 1990		
Averaging Time - Threshold (A				hours	122640	USEPA 2009			
Advection)			NA	122010	0021712000			
Exposure Time (ET)				hr/day	2	CRC Care 2011			
Fraction Inhaled from Contami	inated Source (FI)			- '	1	Assume all of resider	ice above groundwate	er/soils	
Intake Factor = ET*FI*EF*ED)			-	1.7E-02	NonThreshold	-		
AT					8.3E-02	Threshold			
NonThreshold Risk = Inhalatic Hazard Quotients = (Inhalation	n Exposure Concentra	tion/Allowable TC	Cair)		o and a state of the state of t				
Chemical		ty Data			Concentration		cposure		ted Risk
	Inhalation Unit Risk	Chronic TC air	Background Intake (%	Chronic TC Allowable for Assessment (TC-	in Outdoor Air	Inhalation Exposure	Inhalation Exposure	NonThreshold Risk	Chronic Hazard Quotient
	NISK		Chronic TC)	Background)		Concentration - NonThreshold	Concentration - Threshold	RISK	Quotient
	(mg/m ³) ⁻¹	(mg/m ³)			(mg/m ³)	Concentration -	Concentration - Threshold	(unitless)	(unitless)
		(mg/m ³)		Background)	(mg/m³)	Concentration - NonThreshold	Concentration -		
Tetrachloroethene	(mg/m ³) ⁻¹	2.0E-01	Chronic TC)	Background) (mg/m ³) 2.0E-01	8.8E-11	Concentration - NonThreshold (mg/m ³) 1.5E-12	Concentration - Threshold (mg/m ³) TOTAL 7.3E-12	(unitless) 1.7E-11	(unitless) 1.2E-5 3.7E-11
Trichloroethene		2.0E-01 2.0E-03		Background) (mg/m ³) 2.0E-01 1.8E-03	8.8E-11 2.5E-07	Concentration - NonThreshold (mg/m ³) 1.5E-12 4.1E-09	Concentration - Threshold (mg/m ³) TOTAL 7.3E-12 2.1E-08	(unitless) 1.7E-11	(unitless) 1.2E-5 3.7E-11 1.1E-5
Trichloroethene	(mg/m ³) ⁻¹	2.0E-01 2.0E-03 7.0E-03	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03	8.8E-11	Concentration - NonThreshold (mg/m ³) 1.5E-12	Concentration - Threshold (mg/m ³) TOTAL 7.3E-12	(unitless) 1.7E-11 1.7E-11 	(unitless) 1.2E-5 3.7E-11 1.1E-5 4.0E-7
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 -	2.0E-01 2.0E-03 7.0E-03	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03	8.8E-11 2.5E-07	Concentration - NonThreshold (mg/m ³) 1.5E-12 4.1E-09	Concentration - Threshold (mg/m ³) TOTAL 7.3E-12 2.1E-08	(unitless) 1.7E-11 1.7E-11 	(unitless) 1.2E-5 3.7E-11 1.1E-5 4.0E-7
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - -	2.0E-01 2.0E-03 7.0E-03 -	Chronic TC) 10% -	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 -	8.8E-11 2.5E-07	Concentration - NonThreshold (mg/m ³) 1.5E-12 4.1E-09	Concentration - Threshold (mg/m ³) TOTAL 7.3E-12 2.1E-08	(unitless) 1.7E-11 1.7E-11 	(unitless) 1.2E-5 3.7E-11 1.1E-5 4.0E-7
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - -	2.0E-01 2.0E-03 7.0E-03 -	Chronic TC) 10%	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - -	8.8E-11 2.5E-07	Concentration - NonThreshold (mg/m ³) 1.5E-12 4.1E-09	Concentration - Threshold (mg/m ³) TOTAL 7.3E-12 2.1E-08	(unitless) 1.7E-11 1.7E-11 	(unitless) 1.2E-5 3.7E-11 1.1E-5 4.0E-7
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - -	2.0E-01 2.0E-03 7.0E-03 - -	Chronic TC) 10%	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - -	8.8E-11 2.5E-07	Concentration - NonThreshold (mg/m ³) 1.5E-12 4.1E-09	Concentration - Threshold (mg/m ³) TOTAL 7.3E-12 2.1E-08	(unitless) 1.7E-11 1.7E-11 	(unitless) 1.2E-5 3.7E-11 1.1E-5 4.0E-7
	(mg/m ³) ⁻¹ 4.1E-03 - - - - -	2.0E-01 2.0E-03 7.0E-03 -	Chronic TC) 10%	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - -	8.8E-11 2.5E-07	Concentration - NonThreshold (mg/m ³) 1.5E-12 4.1E-09	Concentration - Threshold (mg/m ³) TOTAL 7.3E-12 2.1E-08	(unitless) 1.7E-11 1.7E-11 	(unitless) 1.2E-5 3.7E-11 1.1E-5 4.0E-7
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - - -	8.8E-11 2.5E-07	Concentration - NonThreshold (mg/m ³) 1.5E-12 4.1E-09	Concentration - Threshold (mg/m ³) TOTAL 7.3E-12 2.1E-08	(unitless) 1.7E-11 1.7E-11 	(unitless) 1.2E-5 3.7E-11 1.1E-5 4.0E-7
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - - - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - - - - -	8.8E-11 2.5E-07	Concentration - NonThreshold (mg/m ³) 1.5E-12 4.1E-09	Concentration - Threshold (mg/m ³) TOTAL 7.3E-12 2.1E-08	(unitless) 1.7E-11 1.7E-11 	(unitless) 1.2E-5 3.7E-11 1.1E-5 4.0E-7
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - - - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - - - -	8.8E-11 2.5E-07	Concentration - NonThreshold (mg/m ³) 1.5E-12 4.1E-09	Concentration - Threshold (mg/m ³) TOTAL 7.3E-12 2.1E-08	(Unitless) 1.7E-11 1.7E-11 	(unitless) 1.2E-5 3.7E-11 1.1E-5 4.0E-7
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - - - - - - - - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	8.8E-11 2.5E-07	Concentration - NonThreshold (mg/m ³) 1.5E-12 4.1E-09	Concentration - Threshold (mg/m ³) TOTAL 7.3E-12 2.1E-08	(unitless) 1.7E-11 1.7E-11 	(unitless) 1.2E-5 3.7E-11 1.1E-5 4.0E-7
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - - - - - - - - - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	8.8E-11 2.5E-07	Concentration - NonThreshold (mg/m ³) 1.5E-12 4.1E-09	Concentration - Threshold (mg/m ³) TOTAL 7.3E-12 2.1E-08	(unitless) 1.7E-11 1.7E-11 	(unitless) 1.2E-5 3.7E-11 1.1E-5 4.0E-7
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - - - - - - - - - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	8.8E-11 2.5E-07	Concentration - NonThreshold (mg/m ³) 1.5E-12 4.1E-09	Concentration - Threshold (mg/m ³) TOTAL 7.3E-12 2.1E-08	(unitless) 1.7E-11 1.7E-11 	(unitless) 1.2E-5 3.7E-11 1.1E-5 4.0E-7
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - - - - - - - - - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	8.8E-11 2.5E-07	Concentration - NonThreshold (mg/m ³) 1.5E-12 4.1E-09	Concentration - Threshold (mg/m ³) TOTAL 7.3E-12 2.1E-08	(unitless) 1.7E-11 1.7E-11 	(unitless) 1.2E-5 3.7E-11 1.1E-5 4.0E-7
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - - - - - - - - - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	8.8E-11 2.5E-07	Concentration - NonThreshold (mg/m ³) 1.5E-12 4.1E-09	Concentration - Threshold (mg/m ³) TOTAL 7.3E-12 2.1E-08	(unitless) 1.7E-11 1.7E-11 	(unitless) 1.2E-5 3.7E-11 1.1E-5 4.0E-7

 \uparrow

	olatilo olioi	moulo									
Chronic Exposure							Exposure Param				
General Data/ Equa	tions			Units		Inhalation Inc	doors by Older Ch	nild (5-15 yrs)			
Exposure Paramete	ers										
Exposure Frequency (EF				days/year	365 Exposure every day						
Exposure Duration (ED)				years	10						
Body Weight (BW)				kg	34.5	USEPA 1989 and CSMS 1996					
Averaging Time - NonTh	reshold (ATc)			hours	613200	USEPA 2009					
Averaging Time - Threshold (ATn)				hours	87600	USEPA 2009					
Advection				Y	0,000	002.7.2000					
Exposure Time (ET)				hr/day	20.0	Time spent indoors (CRC CARE) less time	spent in basement			
Fraction Inhaled from Co	ntaminated Source	(FI)		- '	1		nce above groundwate				
Intake Factor = ET*FI*E				-	1.2E-01	NonThreshold	0				
AT					8.3E-01	Threshold					
					0.02 01						
NonThreshold Risk = Inh Hazard Quotients = (Inha Chemical	alation Exposure Co				Concentration	Daily E	xposure	Calcula	ted Risk		
	Inhalation Unit Risk	Chronic TC air	Intake (%	Chronic TC Allowable for	in Indoor Air	Inhalation Exposure	Inhalation Exposure	NonThreshold Risk	Chronic Hazard Quotient		
			Chronic TC)	Assessment (TC- Background)		Concentration - NonThreshold	Concentration - Threshold				
	(mg/m ³) ⁻¹	(mg/m ³)		(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(unitless)	(unitless)		
							TOTAL	1.1E-7	1.1E-1		
Tetrachloroethene		2.0E-01		2.0E-01	8.2E-08	9.8E-09	6.9E-08		3.4E-07		
Trichloroethene	4.1E-03	2.0E-03	10%	1.8E-03	2.3E-04	2.7E-05	1.9E-04	1.1E-07	1.1E-01		
cis-1,2-dichloroethene		7.0E-03		7.0E-03	3.1E-05	3.7E-06	2.6E-05		3.7E-03		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
		-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		

 \uparrow

General Data/ Equa Exposure Paramete Exposure Frequency (EF Exposure Duration (ED) Body Weight (BW) Averaging Time - NonTh Averaging Time - Thresh Advection	ers ⁻) reshold (ATc)			Units days/year years kg hours hours NA	365 10 34.5 613200 87600				
Exposure Time (ET)				hr/day	2	CRC CARE			
Fraction Inhaled from Co	ntaminated Source	(FI)		-	1	Assume all of reside	nce above groundwat	ter/soils	
Intake Factor = <u>ET*FI*E</u> AT	<u>F*ED</u>			-	1.2E-02 8.3E-02	NonThreshold Threshold			
	Risk Intake		able TC air)	Chronic TC Allowable for Assessment (TC-	Concentration in Outdoor Air	Daily Exposure Inhalation Inhalation Exposure Exposure Concentration - Concentration -		Calculated Risk NonThreshold Chronic H Risk Quotie	
			,	Background)		NonThreshold	Threshold		
	(mg/m ³) ⁻¹	(mg/m ³)		(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(unitless)	(unitless)
							TOTAL	1.2E-11	1.2E-5
Tetrachloroethene		2.0E-01		2.0E-01	8.8E-11	1.0E-12	7.3E-12		3.7E-11
Trichloroethene	4.1E-03	2.0E-03	10%	1.8E-03	2.5E-07	2.9E-09	2.1E-08	1.2E-11	1.1E-5
		7.0E-03		7.0E-03			2.8E-09		4.0E-7
cis-1,2-dichloroethene					3.3E-08	4.0E-10	2.02-09		
	-	-	-	-	3.3E-06	4.0E-10	2.02-03		
	-	-	-	-	3.32-06	4.0E-10	2.02-03		
		- - -	-		3.3E-06	4.0E-10			
		- - - -		- - - -	3.32-06	4.0E-10	2.02-03		
		- - -	-		3.3E-00	4.0E-10	2.02-03		
	- - - -	- - - - -	- - - -	- - - -	3.35-00	4.02-10	2.02-03	 	
	- - - - -	- - - - -	- - - - -	- - - - -	3.3E-00	4.02-10		 	
	- - - - - -	- - - - - - -	- - - - - -	- - - - - -	3.3E-00			 	
	- - - - - - - - - - -	- - - - - - - - - -	- - - - - - -	- - - - - - - - -	3.3E-00				
	- - - - - - - - - - - - - -	- - - - - - - - - - -	- - - - - - - -	- - - - - - - - - -	3.3E-00				
	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - -	- - - - - - - - - - -	- - - - - - - - - - -	3.3E-00			 	
		- - - - - - - - - - - - - - - -	- - - - - - - - - - - - -	- - - - - - - - - - - - - - - -	3.3E-00				
		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	3.3E-00				
		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -					

		moulo									
Chronic Exposure							Exposure Param				
General Data/ Equat	tions			Units		Inhalation In	doors by Young	Child (0-5 yrs)			
Exposure Paramete	ers										
Exposure Frequency (EF				days/year	365	Exposure every day					
Exposure Duration (ED)	,			years	6						
Body Weight (BW)				kg	13.2	NEPM 1999 and CS					
Averaging Time - NonThr	reshold (ATc)			hours	613200	USEPA 2009					
Averaging Time - Threshold (ATn)				hours	52560	USEPA 2009					
Advection				Y							
Exposure Time (ET)				hr/day	20.0	Time spent indoors	(CRC CARE) less time	e spent in basement			
Fraction Inhaled from Co	ntaminated Source	(FI)		-	1	Assume all of reside	nce above groundwat	er/soils			
Intake Factor = ET*FI*EI	F*ED			-	7.1E-02	NonThreshold					
AT					8.3E-01	Threshold					
Hazard Quotients = (Inha Chemical	-	ncentration/Allow	able TC air)		Concentration	Daily F	xposure	Calcula	ted Risk		
		Chronic TC air	Intake (%	Chronic TC Allowable for	in Indoor Air	Inhalation Exposure	Inhalation Exposure	NonThreshold Risk	Chronic Hazard Quotient		
			Chronic TC)	Assessment (TC- Background)		Concentration - NonThreshold	Concentration - Threshold				
	(mg/m ³) ⁻¹	(mg/m ³)		(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(unitless)	(unitless)		
							TOTAL	6.8E-8	1.1E-1		
Tetrachloroethene		2.0E-01		2.0E-01	8.2E-08	5.9E-09	6.9E-08	-	3.4E-7		
Trichloroethene	4.1E-03	2.0E-03	1.0E-01	1.8E-03	2.3E-04	1.6E-05	1.9E-04	6.8E-8	1.1E-1		
cis-1,2-dichloroethene		7.0E-03		7.0E-03	3.1E-05	2.2E-06	2.6E-05	-	3.7E-3		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-		-	-		
	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-		
		-		-	-	-	-	-	-		
	-	-		-	-	-	-	-	-		
			-			-	-				

Add comments regarding concentrations here

 \wedge

General Data/ Equat Exposure Paramete Exposure Frequency (EF Exposure Duration (ED) Body Weight (BW) Averaging Time - NonThr Averaging Time - Thresho Advection	r rs) reshold (ATc)			Units days/year years kg hours hours NA	365 6 13.2 613200 52560	Inhalation Outdoors by Young Child (0-5 yrs) Exposure every day Lifetime exposure for age group NEPM 1999 and CSMS 1996 USEPA 2009 USEPA 2009			
Exposure Time (ET) Fraction Inhaled from Cor	ntominated Source	(EI)		hr/day	2	CRC CARE	ana ahaya araundwa	tor/agila	
Intake Factor = <u>ET*FI*EF</u> AT		(FI)		-	7.1E-03 8.3E-02	Assume all of residence above groundwater/soils NonThreshold Threshold			
NonThreshold Risk = Inha Hazard Quotients = (Inha Chemical	lation Exposure Col Toxicit		able TC air)	Chronic TC Allowable for Assessment (TC-	Concentration in Outdoor Air	Daily E Inhalation Exposure Concentration - NonThreshold	Xposure Inhalation Exposure Concentration - Threshold	Calcula NonThreshold Risk	ted Risk Chronic Hazard Quotient
	31	3		Background)	3.				
	(mg/m ³) ⁻¹	(mg/m ³)		(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(unitless)	(unitless)
		TT			I		TOTAL	7.2E-12	1.2E-5
Tetrachloroethene		2.0E-01	100/	2.0E-01	8.8E-11	6.3E-13	7.3E-12	-	3.7E-11
Trichloroethene cis-1.2-dichloroethene	4.1E-03	2.0E-03 7.0E-03	10%	1.8E-03 7.0E-03	2.5E-07 3.3E-08	1.8E-09 2.4E-10	2.1E-08 2.8E-09	7.2E-12	1.1E-5 4.0E-7
				7.0E-03	3.3E-08	2.4E-10	2.8E-09	-	4.0E-7
cis-1,2-dicitior dell'ierie	-	-	-	-				-	-
								-	
	-	-	-	-				_	
			-					-	-
	-	-		-					-
	-	-	-	-					
		- - -	-	-				-	-
	- - - - -	- - - -		- - - -				-	-
		- - - - -	- - - -	- - - - -					
		- - - - - - -	- - - - -	- - - - - -				- - - -	- - - -
		- - - - - - -	- - - - - -	- - - - - - - - -				- - - - -	- - - - -
		- - - - - - - - -	- - - - - - -	- - - - - - - - - - -				- - - - - -	- - - - - -
		- - - - - - - - - - - - -	- - - - - - - - -	- - - - - - - - - - - - - - - - -				- - - - - -	- - - - - -
		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - -	- - - - - - - - - - - - - - - - - - -				- - - - - - -	- - - - - - - - - -
		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -				- - - - - - - - -	- - - - - - - - - -

Summary of Risk for RME Exposure

Pathway	NonThreshold Risks	Threshold Risks Hazard Index	
Adult Residents (Chronic Exposures)			
Inhalation of COPC Indoors	1.6E-07	0.110	
Inhalation of COPC Outdoors	1.7E-11	0.0000118	
Incidental Ingestion of COPC in Water			
Dermal Contact with COPC in Water			
Total Risk	1.6E-07	0.110	
Older Child Residents (Chronic Exposures)			
Inhalation of COPC Indoors	1.1E-07	0.110	
Inhalation of COPC Outdoors	1.2E-11	0.0000118	
Incidental Ingestion of COPC in Water			
Dermal Contact with COPC in Water			
Total Risk	1.1E-07	0.110	
Young Child Residents (Chronic Exposures)			
Inhalation of COPC Indoors	6.8E-08	0.110	
Inhalation of COPC Outdoors	7.2E-12	0.0000118	
Incidental Ingestion of COPC in Water			
Dermal Contact with COPC in Water			
Total Risk	6.8E-08	0.110	
Lifetime Risk (Chronic)	3.4E-07	0.110	

USIN	USEPA vapor MI	gration Guidance	; (2003), 3011150	
Site Specific Physical Input Parameters	Units	Abbrev.	Value	Comments
Thickness of Soil Above Contaminated Layer	[m]	d	1	Calculated from layers
Thickness of Contaminated Layer	[m]	surfd	2	Estimated for soil types
Soil Temperature	[C]	Т	25	site-specific assumption
Vadose Zone Layer 1 Characteristics				CRC Care - Sand, Sandy Clay
Depth of Layer 1	[m]	vd1	0	Typical depth from logs
Moisture Content	[cm ³ /g]	mocon	0.08	Estimated for CRC Care - Sand, Sandy Clay
Organic Carbon Fraction	-	foc	0.003	Estimated for CRC Care - Sand, Sandy Clay
Soil Bulk Density	[g/cm ³]	rhob	1.625	Estimated for CRC Care - Sand, Sandy Clay
Density of Solids	[g/cm ³]	sd	2.65	site-specific assumption
Total Soil Porosity	[cm ³ /cm ³]	theta	0.39	1 - (rhob/sd)
Volumetric Water Content	[cm ³ /cm ³]	wacon	0.130	mocon*rhob
Volumetric Air Content	[cm ³ /cm ³]	acon	0.257	theta-wacon
Vadose Zone Layer 2 Characteristics				CRC Care - Sand, Sandy Clay
Depth of Clean Soil overlying impact in Layer 2	[m]	vd2	1	Typical depth from logs
Moisture Content	[cm ³ /g]	mocon2	0.08	Estimated for CRC Care - Sand, Sandy Clay
Organic Carbon Fraction	-	foc2	0.003	Estimated for CRC Care - Sand, Sandy Clay
Soil Bulk Density	[g/cm ³]	rhob2	1.625	Estimated for Estimated for CRC Care - Sand, Sandy Clay
Density of Solids	[g/cm ³]	sd2	2.65	site-specific assumption
Total Soil Porosity	[cm ³ /cm ³]	theta2	0.39	1 - (rhob2/sd2)
Volumetric Water Content	[cm ³ /cm ³]	wacon2	0.130	mocon2*rhob2
Volumetric Air Content	[cm ³ /cm ³]	acon2	0.257	theta2-wacon2

Using USEPA Vapor Migration Guidance (2003), Johnson Ettinger Model

Receptor Specific Input Parameters	Units	Abbrev.	Value	Comments
Building Characteristics				Residential - Slab On Ground (Building Type)
Depth of Basement	[m]	basement	0	Depth of basement below ground level
Width of Building	[m]	bwidth	10	Site specific assumption
Length of Building	[m]	blength	10	Site specific assumption
Area of Building Below Ground Level	[m ²]	area	100	Assume whole building above source
Foundation/wall thickness	[m]	fthick	0.1	Site specific assumption
Building Mixing Height	[m]	boxh	2.4	Assumption for room
Hourly Volume Exchange of Fresh Air	[exch/hr]	exchanges	0.6	CRC CARE for residential
Fraction of Cracks in Walls and foundation	-	cracks	0.001	Max from CRC CARE 2011
Qbuilding	[cm ³ /s]	Qb	40000	Calculated from building volume and exchange rate
Qsoil	[cm ³ /s]	Qs	83.33333333	Calculated from default of Qs:Qb (CRC Care 2010)
Ratio of Qs:Qb	-	Qs/Qb	0.005	Defaults are 0.005 (Res) and 0.001 (Comm) (CRC CARE)
Acrack	[cm ²]	Ac	1000	Calculated from building area and crack ratio, USEPA 2003
Volumetric Water Content in foundation/wall cracks	[cm ³ /cm ³]	fwacon	0.12	Default Value ASTM 1739-95
Volumetric Air Content in foundation/wall cracks	[cm ³ /cm ³]	facon	0.26	Default Value ASTM 1739-95
Outdoor Air Characteristics				
Length of Contaminated Area	[m]	length	10	site-specific assumption
Width of Contaminated Area	[m]	width	10	site-specific assumption
Wind Speed Outdoors	[m/s]	wspd	2.5	site-specific assumption
Height of Outdoor Mixing Zone	[m]	outboxh	1.5	Default Value

Chemical Specific Parameters	Water Solubility (mg/L)	MW (g/mol)	Koc (cm³/g)	Air Diffusion Coefficient (cm²/s)	Water Diffusion Coefficient (cm ² /s)	Vapour Pressure (mmHg)	Henry's Law Constant (unitless)
Tetrachloroethene	206	165.83	107	0.051	9.5E-06	53.20	7.24E-01
Trichloroethene	1280	131.40	68	0.069	1.0E-05	72.50	4.03E-01
cis-1,2-dichloroethene	3500	96.95	36	0.076	1.1E-05	201.00	1.67E-01

Tetrachloroethene 3.63E-3 3.63E-3 3.79E-3 3.63E-3 3.63E-3 Trichloroethene 4.94E-3 4.94E-3 5.15E-3 4.94E-3 4.94E-3 is 4.2 disblaroethene 5.47E-2 5.47E-2 5.47E-2 5.47E-2 5.47E-2	Vapour Transport Calculations	Deff Layer 1 (cm²/s)	Deff Layer 2 (cm ² /s)	Deff Foundations and Cracks (cm ² /s)	•	Total Effective Diffusion (source to outdoor (cm ² /s)

Subsurface Soils Phase Partitioning Results	Soil Concentration (mg/kg)	Vapour Phase Concentration (g/cm³)	Pure Component Saturated Soil Concentration (mg/kg)	Pure Component Saturated Vapour Conentration (g/cm ³)	Free Phase Mole Fraction (mol/mol)	Concentration above Free Phase (g/cm³)	Mixture Saturated Soil Concentration (mg/kg)
Tetrachloroethene			3379.3	4.7E-04			
Trichloroethene			4411	5.1E-04			
cis-1,2-dichloroethene			13367	1.0E-03			

Calculated Air Concentrations (with advection)	Measured Soil Vapour (ug/m ³)	Vapour Phase Concentration at Source (ug/m ³)	Vapour Phase Concentration at Source (mg/m ³)	JE Attenuation Coefficient (unitless)	Emission Rate to Indoor Air (g/s)	Depletion Time (years)	Indoor Concentration (μg/m³)
Tetrachloroethene	6.5	6.5E+00	6.5E-03	6.3E-04	1.6E-10		0.004
Trichloroethene	8400	8.4E+03	8.4E+00	7.8E-04	2.6E-07		6.5
cis-1,2-dichloroethene	280	2.8E+02	2.8E-01	8.3E-04	9.2E-09		0.2

Calculated Air Concentrations ASTM Guidance (without advection)	Vapour Phase Concentration at Source (ug/m3)	Vapour Phase Concentration at Source (g/cm3)	Vapour Phase Concentration at Source (mg/m ³)	Emission Rate into building (g/s)	Depletion Time (years)	Indoor Concentration (µg/m³)	Outdoor Air Concentration (µg/m³)
Tetrachloroethene	6.5E+00	6.5E-12	6.5E-03	2.4E-12		0.0001	0.00001
Trichloroethene	8.4E+03	8.4E-09	8.4E+00	4.3E-09		0.11	0.011
cis-1,2-dichloroethene	2.8E+02	2.8E-10	2.8E-01	1.6E-10		0.0039	0.0004

Toxicity and Dermal Absorption Parameters

C = calculated from chronic value, Ch = chronic value adopted

Chemical				Oral/Der	mal Exposures	5		
	Non- Threshold Slope Factor		Threshold Chronic TDI		Threshold Subchronic TDI		Dermal Permeability	Dermal Adsorption
	(mg/kg/day) ⁻¹	Ref	(mg/kg/day)	Ref	(mg/kg/day)	Ref	(cm/hr)	(Unitless)
Tetrachloroethene	0.00E+00	0	1.40E-02	ADWG/WHO	0.00E+00	-	4.81E-02	3.00E-02
Trichloroethene	7.80E-04	WHO	1.46E-03	WHO	1.46E-03	-	1.57E-02	3.00E-02
cis-1,2-dichloroethene	0.00E+00	-	2.00E-03	USEPA 2010	3.00E-01	ATSDR	1.49E-02	3.00E-02
	-	-	-	-	-	-	-	-

Toxicity and Derma

C = calculated from chronic values values and values values of the chronic values of t

Chemical			Background Intake (% TDI)					
	Inhalation Unit Risk		Threshold Chronic TC		Threshold Subchronic TC		Chronic Assessment	Subchronic Assessment
	(ug/m ³) ⁻¹	Ref	(mg/m ³)	Ref	(mg/m ³)	Ref	(%)	
Tetrachloroethene	0.00E+00	-	2.00E-01	WHO	2.00E-01	-	0.00%	10.00%
Trichloroethene	4.10E-06	US EPA	2.00E-03	US EPA	2.00E-03	-	10.00%	10.00%
cis-1,2-dichloroethene	0.00E+00	-	7.00E-03	USEPA 2010	7.90E-01	ATSDR	0.00%	0.00%
	-	-	-	-	-	-	-	-

General Data/ EquationsUnitsInhalation Indoors by AdultExposure ParametersExposure Frequency (EF)days/year365Every day of the yearExposure Duration (ED)years1430 year lifetime exposure less childhood yearsBody Weight (BW)kg70CRC CARE	Chronic Exposures General Data/ Equation				Units	Re			arameters (F	RME)				
Exposure Frequency (EF)days/year365Every day of the yearExposure Duration (ED)years1430 year lifetime exposure less childhood years					Onits		IIIIIaiau		s by Addit					
Exposure Duration (ED) years 14 30 year lifetime exposure less childhood years		5			dave/vear	365	Even, day of	the year						
									less childhood	Voare				
								ine exposure		i years				
Averaging Time - NonThreshold (ATc) hours 613200 USEPA 2009		shold (ATc))		•			a						
Averaging Time - Threshold (ATn) hours 122640 USEPA 2009			/											
Include Source Depletion N					N			-						
Exposure Time (ET) hr/day 20 CRC CARE					hr/day	20	CRC CARE							
Fraction Inhaled from Contaminated Source (FI) - 1 Assume all of residence above groundwater/soils	Fraction Inhaled from Conta	aminated S	Source (FI)		-	1	Assume all c	of residence a	bove groundw	ater/soils				
Intake Factor = ET*FI*EF*ED - 1.7E-01 NonThreshold	Intake Factor = ET*FI*EF*E	ED			-	1.7E-01	NonThresh	bld						
AT 8.3E-01 Threshold						-								
Inhalation Exposure Concentration = Concentration in Air x Intake Factor (ref: USEPA 2009)	Inhalation Exposure Concer	ntration = 0	Concentration	in Air x Intake F	actor (ref: USEPA 2	2009)					1			
NonThreshold Risk = Inhalation Exposure Concentration x Unit Risk						·								
Hazard Quotients = (Inhalation Exposure Concentration/Allowable TC air)	Hazard Quotients = (Inhalate	tion Exposi	ure Concentra	tion/Allowable 7	ГС air)									
Chemical Toxicity Data Concentration Daily Exposure	Chemical	Toxici	ity Data									Concentration	Daily	Exposure
Inhalation Chronic TC Background Chronic TC Depletion Exposure Averaging Averaging Intake Intake Factor in Indoor Air Inhalation Inhalation				Background	Chronic TC	Depletion	Exposure	Averaging	Averaging	Intako	Intake Eactor			
Unit Risk air Intake (% Allowable for Time Duration Time (AT) Time (AT) Factor (Threshold) Exposure Exposure														
Chronic TC) Assessment (TC- (ED) Non- Threshold (Non- Concentration - Concentr	3	JIII NISK	an			Time					(Threahold)			
Background) Threshold Threshold NonThreshold Threshold							(20)		miconola	· ·				
$(mg/m^3)^{-1}$ (mg/m^3) (mg/m^3) $(years)$ $(years)$ $(hours)$ $(hours)$ (mg/m^3) (mg/m^3) (mg/m^3)	((ma/m ³) ⁻¹	(ma/m ³)			(vears)	(vears)		(hours)			(ma/m ³)		
NOT USED TOTAL	``````````````````````````````````````	(3.)	(3 /		(5. /		(youro)	(nouro)	(nouro)			() /	(3 /	
Tetrachloroethene 2.0E-01 2.0E-01 14.0 6.1E+05 1.2E+05 8.3E-01 4.1E-06 3.4E-06	Tetrachloroethene		2.0E-01		2.0E-01	NOT USED	14.0	6 1E+05	1 2E+05		8 3E-01	4 1E-06	<u> </u>	
Trichloroethene 4.1E-03 2.0E-03 10% 1.8E-03 14.0 6.1E+05 1.2E+05 1.7E-01 8.3E-01 6.5E-03 1.1E-03 5.4E-03		4 1E-03		10%						1 7E-01			1 1E-03	
Cis-1.2-dichloroethene 7.0E-03 7.0E-03 7.0E-03 14.0 6.1E+05 1.2E+05 8.3E-01 2.3E-04 1.9E-04		1.12 00		1070						1.7 2 01			1.12 00	
		-		-		-	_			-			-	
		-	-	-	-	-	-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-	-	-	-	-	-
		-	-		-	-	-	-	-	-			-	-
	ļ							-	-					
		-	-		-	-	-	-	-	-				
		-	-	-	-	-	-	-	-	-				
		-	-	-	-	-		-	-	-	-	-		-

Calculated Risk

Max Chronic

Hazard

Quotient

(unitless)

3.0E+0

1.7E-05

3.0E+00 2.8E-02

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Non

Threshold

Risk

(unitless)

4.5E-6

--

4.5E-06

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Chronic Exposures			Residential Exposure Parameters (RME)
General Data/ Equations	Units		Inhalation Outdoors by Adult
Exposure Parameters			
Exposure Frequency (EF)	days/year	365	Every day of the year
Exposure Duration (ED)	years	14	30 year lifetime exposure less childhood years
Body Weight (BW)	kg	70	USEPA 1989 and CSMS 1996
Averaging Time - NonThreshold (ATc)	hours	613200	USEPA 2009
Averaging Time - Threshold (ATn)	hours	122640	USEPA 2009
Include Source Depletion	N		
Exposure Time (ET)	hr/day	2	CRC CARE
Fraction Inhaled from Contaminated Source (FI)	-	1	Assume all of residence above groundwater/soils
AT			-

NonThreshold Risk = Inhalation Exposure Concentration in All X Intake Pacific (NonThreshold Risk = Inhalation Exposure Concentration X Unit Risk Hazard Quotients = (Inhalation Exposure Concentration/Allowable TC air)

Chemical	Toxic	city Data								.1	Concentration	Daily E	xposure	Calcula	ated Risk
	Inhalation Unit Risk	Chronic TC air	Background Intake (% Chronic TC)	Chronic TC Allowable for Assessment (TC- Background)	Depletion Time	Exposure Duration (ED)		Averaging Time (AT) Threshold	Intake Factor (Non- Threshold)	(Threshold)	in Outdoor Air	Exposure	Inhalation Exposure Concentration - Threshold	Non Threshold Risk	Max Chronic Hazard Quotient
	(mg/m ³) ⁻¹	(mg/m ³)		(mg/m ³)	(years)	(years)	(hours)	(hours)			(mg/m ³)	(mg/m ³)	(mg/m ³)	(unitless)	(unitless)
					NOT USED								TOTAL	7.6E-10	5.2E-4
Tetrachloroethene		2.0E-01		2.0E-01		14.0	6.1E+05	1.2E+05		8.3E-02	6.3E-09		5.2E-10		2.6E-09
Trichloroethene	4.1E-03	2.0E-03	10%	1.8E-03		14.0	6.1E+05	1.2E+05	1.7E-02	8.3E-02	1.1E-05	1.8E-07	9.2E-07	7.6E-10	5.1E-04
cis-1,2-dichloroethene		7.0E-03		7.0E-03		14.0	6.1E+05	1.2E+05		8.3E-02	4.1E-07		3.4E-08		4.9E-06
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
					-	-				-	-	-	-	-	-

Chronic Exposures			Residential Exposure Parameters (RME)
General Data/ Equations	Units		Inhalation Indoors by Older Children
Exposure Parameters			
Exposure Frequency (EF)	days/year	365	Every day of the year
Exposure Duration (ED)	years	10	Total exposure during ages 6 to 15 years
Body Weight (BW)	kg	70	USEPA 1989 and CSMS 1996
Averaging Time - NonThreshold (ATc)	hours	613200	USEPA 2009
Averaging Time - Threshold (ATn)	hours	87600	USEPA 2009
Include Source Depletion	Ν		
Exposure Time (ET)	hr/day	20	CRC CARE
Fraction Inhaled from Contaminated Source (FI)	-	1	Assume all of residence above groundwater/soils
Intake Factor = <u>ET*FI*EF*ED</u>	-	1.2E-01	NonThreshold
AT		8.3E-01	Threshold

NonThreshold Risk = Inhalation Exposure Concentration x Unit Risk

Hazard Quotients = (Inhalation Exposure Concentration/Allowable TC air)

Chemical	Toxici	ity Data									Concentration	Daily E	xposure	Calcula	ated Risk
	Inhalation Unit Risk	Chronic TC air	Background Intake (% Chronic TC)	Chronic TC Allowable for Assessment (TC- Background)	Depletion Time	Exposure Duration (ED)	Averaging Time (AT) Non- Threshold	Averaging Time (AT) Threshold	Intake Factor (Non- Threshold)	Intake Factor (Threshold)	in Indoor Air	Inhalation Exposure	Inhalation Exposure Concentration - Threshold	Non Threshold Risk	Max Chronic Hazard Quotient
	(mg/m ³) ⁻¹	(mg/m ³)		(mg/m ³)	(years)	(years)	(hours)	(hours)			(mg/m ³)	(mg/m ³)	(mg/m ³)	(unitless)	(unitless)
					NOT USED								TOTAL	3.2E-6	3.0E+0
Tetrachloroethene		2.0E-01		2.0E-01		10.0	6.1E+05	8.8E+04		8.3E-01	4.1E-06		3.4E-06		1.7E-05
Trichloroethene	4.1E-03	2.0E-03	10%	1.8E-03		10.0	6.1E+05	8.8E+04	1.2E-01	8.3E-01	6.5E-03	7.8E-04	5.4E-03	3.2E-06	3.0E+00
cis-1,2-dichloroethene		7.0E-03		7.0E-03		10.0	6.1E+05	8.8E+04		8.3E-01	2.3E-04		1.9E-04		2.8E-02
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
					-	-				-	-	-	-	-	-

Chronic Exposures	Residential Exposure Parameters (RME)					
General Data/ Equations	Units	Inhalation Outdoors by Older Children				
Exposure Parameters						
Exposure Frequency (EF)	days/year	365	Every day of the year			
Exposure Duration (ED)	years	10	Total exposure during ages 6 to 15 years			
Body Weight (BW)	kg	70	USEPA 1989 and CSMS 1996			
Averaging Time - NonThreshold (ATc)	hours	613200	USEPA 2009			
Averaging Time - Threshold (ATn)	hours	87600	USEPA 2009			
Include Source Depletion	Ν					
Exposure Time (ET)	hr/day	2	CRC CARE			
Fraction Inhaled from Contaminated Source (FI)	-	1	Assume all of residence above groundwater/soils			
AT ,			5			

Inhalation Exposure Concentration = Concentration in Air x Intake Factor (ref: USEPA 2009)

NonThreshold Risk = Inhalation Exposure Concentration x Unit Risk

Hazard Quotients = (Inhalation Exposure Concentration/Allowable TC air)

Chemical	Toxicit	y Data									Concentration	Daily E	xposure	Calcul	ated Risk
	Inhalation Unit Risk	Chronic TC air	Background Intake (% Chronic TC)	Chronic TC Allowable for Assessment (TC- Background)	Depletion Time	Exposure Duration (ED)	Averaging Time (AT) Non- Threshold	Averaging Time (AT) Threshold	Intake Factor (Non- Threshold)	Intake Factor (Threshold)	in Outdoor Air	Inhalation Exposure Concentration - NonThreshold	Inhalation Exposure Concentration		Max Chronic Hazard Quotient
	(mg/m ³) ⁻¹	(mg/m ³)		(mg/m ³)	(years)	(years)	(hours)	(hours)			(mg/m ³)	(mg/m ³)	(mg/m ³)	(unitless)	(unitless)
					NOT USED								TOTAL	5.4E-10	5.2E-4
Tetrachloroethene		2.0E-01		2.0E-01		10.0	6.1E+05	8.8E+04		8.3E-02	6.3E-09		5.2E-10		2.6E-09
Trichloroethene	4.1E-03	2.0E-03	10%	1.8E-03		10.0	6.1E+05	8.8E+04	1.2E-02	8.3E-02	1.1E-05	1.3E-07	9.2E-07	5.4E-10	5.1E-04
cis-1,2-dichloroether	1	7.0E-03		7.0E-03		10.0	6.1E+05	8.8E+04		8.3E-02	4.1E-07		3.4E-08		4.9E-06
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

			Residential Exposure Parameters (RME)
General Data/ Equations	Units		Inhalation Indoors by Younger Children
Exposure Parameters			
Exposure Frequency (EF)	days/year	365	Every day of the year
Exposure Duration (ED)	years	6	Total exposure during ages 0 to 5 years
Body Weight (BW)	kg	70	USEPA 1989 and CSMS 1996
Averaging Time - NonThreshold (ATc)	hours	613200	USEPA 2009
Averaging Time - Threshold (ATn)	hours	52560	USEPA 2009
Include Source Depletion	Ν		
Exposure Time (ET)	hr/day	20	CRC CARE
Fraction Inhaled from Contaminated Source (FI)	-	1	Assume all of residence above groundwater/soils
Intake Factor = <u>ET*FI*EF*ED</u>	-	7.1E-02	NonThreshold
AT		8.3E-01	Threshold

NonThreshold Risk = Inhalation Exposure Concentration x Unit Risk

Hazard Quotients = (Inhalation Exposure Concentration/Allowable TC air)

Chemical	Toxici	ty Data									Concentration	Daily E	xposure	Calcula	ated Risk
	Inhalation Unit Risk	Chronic TC air	Background Intake (% Chronic TC)	Chronic TC Allowable for Assessment (TC- Background)	Depletion Time	Exposure Duration (ED)	Averaging Time (AT) Non- Threshold	Averaging Time (AT) Threshold	Intake Factor (Non- Threshold)	Intake Factor (Threshold)	in Indoor Air	Inhalation Exposure Concentration - NonThreshold	Inhalation Exposure Concentration - Threshold	Non Threshold Risk	Max Chronic Hazard Quotient
	(mg/m ³) ⁻¹	(mg/m ³)		(mg/m ³)	(years)	(years)	(hours)	(hours)			(mg/m ³)	(mg/m ³)	(mg/m ³)	(unitless)	(unitless)
					NOT USED								TOTAL	1.9E-6	3.0E+0
Tetrachloroethene		2.0E-01		2.0E-01		6.0	6.1E+05	5.3E+04		8.3E-01	4.1E-06		3.4E-06		1.7E-05
Trichloroethene	4.1E-03	2.0E-03	10%	1.8E-03		6.0	6.1E+05	5.3E+04	7.1E-02	8.3E-01	6.5E-03	4.7E-04	5.4E-03	1.9E-06	3.0E+00
cis-1,2-dichloroether		7.0E-03		7.0E-03		6.0	6.1E+05	5.3E+04		8.3E-01	2.3E-04		1.9E-04		2.8E-02
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
					-	-				-	-	-	-	-	-

Chronic Exposu General Data/ Eq Exposure Parame Exposure Puration (El Body Weight (BW) Averaging Time - Non Averaging Time - Thre	uations eters EF) D) Threshold (A			Units days/year years kg hours hours			tdoors by Y he year e during ages (and CSMS 199	ounger Chi						
Include Source Deplet Exposure Time (ET) Fraction Inhaled from		ed Source (FI)	-	N hr/day -	2 1	CRC CARE Assume all of	residence abo	ve groundwate	er/soils					
Inhalation Exposure C NonThreshold Risk = Hazard Quotients = (In Chemical	Inhalation Ex nhalation Exp	kposure Conce	entration x Unit I	Risk	A 2009)						Concentration	Daily F	xposure	
Greinicai			Background Intake (% Chronic TC)	Chronic TC Allowable for Assessment (TC- Background)	Depletion Time	Exposure Duration (ED)	Averaging Time (AT) Non- Threshold	Averaging Time (AT) Threshold	Intake Factor (Non- Threshold)	Intake Factor (Threshold)	in Outdoor Air	Inhalation Exposure	Inhalation Exposure Concentration - Threshold	
	(mg/m ³) ⁻¹	(mg/m ³)		(mg/m ³)	(years)	(years)	(hours)	(hours)			(mg/m ³)	(mg/m ³)	(mg/m ³)	
	•				NOT USED		•			•			TOTAL	
Tetrachloroethene		2.0E-01		2.0E-01		6.0	6.1E+05	5.3E+04		8.3E-02	6.3E-09		5.2E-10	_
Trichloroethene	4.1E-03	2.0E-03	10%	1.8E-03		6.0	6.1E+05	5.3E+04	7.1E-03	8.3E-02	1.1E-05	7.9E-08	9.2E-07	_
cis-1,2-dichloroethene		7.0E-03		7.0E-03		6.0	6.1E+05	5.3E+04		8.3E-02	4.1E-07		3.4E-08	_
	-	-	-	-	-	-	-	-	-	-	-	-	-	_
	-	-	-	-	-	-	-	-	-	-	-	-		_
	-	-	-	-	-	-	-	-	-	-	-	-	-	+
	-	-	-	-	-	-	-	-	-	-	-	-	-	+
	-	-	-	-	-	-	-	-	-	-	-			+
	-	-	-	-	-	-	-	-	-	-	-			+
	-	-	-		-	-	_	-	_	-	-		-	+
	-	-	-	-	-	-	-	-	-	-	-		-	+
	-	_	-	_	-	-	-	-	_	-	-	-		+
	-	-	-	-	-	-	-	-	-	-	-	-	-	+
	-	-	-	-	-	-	-	-	-	-	-	-	-	+
	-	-	-	-	-	-	-	-	-	-	-	-	-	$t \rightarrow t$
	-	-	-	-	-	-	-	-	-	-	-	-	-	t

Calculated Risk

Threshold Hazard Quotient

Max Chronic

(unitless)

5.2E-4

2.6E-09

5.1E-04

4.9E-06

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Non

Risk

(unitless)

3.2E-10

3.2E-10

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Summary of Risk for RME Exposure

Pathway	NonThreshold Risks	Maximum Hazard Quotient
Adult Residents (Chronic Exposures)		
Inhalation of COPC Indoors	4.5E-06	3.04
Inhalation of COPC Outdoors	7.6E-10	0.0005
Total Risk	4.5E-06	3.04
Older Child Residents (Chronic Exposures)		
Inhalation of COPC Indoors	3.2E-06	3.04
Inhalation of COPC Outdoors	5.4E-10	0.0005
Total Risk	3.2E-06	3.04
Young Child Residents (Chronic Exposures)		
Inhalation of COPC Indoors	1.9E-06	3.04
Inhalation of COPC Outdoors	3.2E-10	0.0005
Total Risk	1.9E-06	3.04
Lifetime Risk (Chronic)	9.5E-06	3.04

VAPOUR PARTITIONING, EMISSION AND AIR DISPERSION MODEL FOR CONTAMINATED GROUNDWATER For Houses on Piers with Crawl-Spaces, migration from Infinite Source. Reference: Turczynowicz 2002

Site Specific Physical Input Parameters	Units	Abbrev.	Value	Comments
Depth of Top of Contaminated Aquifer (BGS)	[m]	d	3.5	Calculated from layers
Thickness of Capillary Fringe	[m]	cd	0.2	Estimated for soil types
Thickness of Vadose Zone	[m]	vd	3.3	Calculated from layers
Soil Temperature	[C]	Т	15	site-specific assumption
Vadose Zone Layer 1 Characteristics				CRC Care - Sand, Sandy Clay
Depth of Layer 1	[m]	vd1	2	Typical depth from logs
Moisture Content	[ml/g]	mocon	0.08	CRC Care 2011
Organic Carbon Fraction	-	foc	0.003	CRC Care 2011
Soil Bulk Density	[g/ml]	rhob	1.625	CRC Care 2011
Density of Solids	[g/ml]	sd	2.65	default
Total Soil Porosity	[ml/ml]	theta	0.39	1 - (rhob/sd)
Volumetric Water Content	[ml/ml]	wacon	0.130	mocon*rhob
Volumetric Air Content	[ml/ml]	acon	0.257	theta-wacon
Vadose Zone Layer 2 Characteristics				Sandy Clay
Depth of Layer 1	[m]	vd2	1.3	Typical depth from logs
Moisture Content	[ml/g]	mocon2	0.26	CRC Care 2011
Organic Carbon Fraction	-	foc2	0.003	CRC Care 2011
Soil Bulk Density	[g/ml]	rhob2	1.56	CRC Care 2011
Density of Solids	[g/ml]	sd2	2.67	default
Total Soil Porosity	[ml/ml]	theta2	0.42	1 - (rhob2/sd2)
Volumetric Water Content	[ml/ml]	wacon2	0.406	mocon2*rhob2
Volumetric Air Content	[ml/ml]	acon2	0.010	theta2-wacon2
Capillary Fringe				
Volumetric Water Content	[ml/ml]	cfwacon	0.406	Value representative of capillary fringe, ASTM (2002)
Volumetric Air Content	[ml/ml]	cfacon	0.01	theta2-cfwacon

Receptor Specific Input Parameters	Units	Abbrev.	Value	Comments
Building Characteristics				
Height of Building (internal)	[m]	bheight	2.4	As per CRC Care 2011
Width of Building	[m]	bwidth	10	Assume whole building above source
Length of Building	[m]	blength	12.7	Assume whole building above source
Area of Emission - Building Area	[m ²]	area	127.0	Default calculation assuming whole house is over source
Volume of Dwelling Space	[m ³]	bvolume	304.8	Calculated using building height and area as per Turczynowicz, 2002
Air Exchange Rate in Dwelling	[exch/day]	exchanges	14.4).6 per hour
Height of Crawl Space	[m]	cheight	0.30	Default Assumption
Volume of Crawl Space	[m ³]	cvolume	38.1	Calculated using crawl space height and area as per Turczynowicz, 2002
Air Exchange Rate in Crawl Space	[exch/day]	cexchanges	72	17.1 exch/hr - Turczynowicz 2002, based on Australian studies
Qcsd	[m ³ /day]	Qcsb	911	911 m3/d for 127 m2 house - Turczynowicz 2002, based on Australian studies
Indoor Air Sinks	[m ³ /day]	Qs	0.0	(35.1 Typical value from Turczynowicz 2002, based on 2 adults indoors)
Outdoor Air Characteristics				
Length of Contaminated Area	[m]	length	20	site-specific assumption
Width of Contaminated Area	[m]	width	300	site-specific assumption
Wind Speed Outdoors	[m/s]	wspd	2.5	site-specific assumption
Height of Outdoor Mixing Zone	[m]	outboxh	1.5	Default Value

Chemical Specific Parameters	Water Solubility (mg/L)	MW (g/mol)	Koc (cm³/g)	Air Diffusion Coefficient (cm ² /s)	Water Diffusion Coefficient (cm ² /s)	Vapour Pressure (mmHg)	Henry's Law Constant (unitless)	Degradation Rate in Air (per day)
Trichloroethene	1280	131	60.7	0.0687	1.0E-05	69	0.403	0.099
Tetrachloroethene	206	166	94.9	0.0505	9.5E-06	18.5	0.724	0.0072
cis-1,2-Dichloroethene	6410	96.9	39.6	0.0884	1.1E-05	201	0.167	0.0866

Vapour Transport Calculations	Deff Layer 1 (cm²/s)	Deff Layer 2 (cm ² /s)	Deff Capillary Fringe (cm ² /s)	Total Effective Diffusion (GW to surface) (cm ² /s)
Trichloroethene	4.94E-3	7.32E-6	7.33E-6	1.71E-5
Tetrachloroethene	3.63E-3	3.80E-6	3.80E-6	8.85E-6
cis-1,2-Dichloroethene	6.36E-3	1.95E-5	1.95E-5	4.52E-5

Phase Partitioning Results	Dissolved Phase Concentration (mg/L)	Vapour Phase Concentration (g/cm ³)	Saturated Vapour Conentration (g/cm ³)	Free Phase Mole Fraction (mol/mol)	Concentration above Free Phase (g/cm ³)	Calculation Vapour Phase Concenration Adopted (g/cm ³)
Trichloroethene	0.47	1.9E-07	5.0E-04	0	0.0E+00	1.9E-07
Tetrachloroethene	0.00018	1.3E-10	1.7E-04	0	0.0E+00	1.3E-10
cis-1,2-Dichloroethene	0.0581	9.7E-09	1.1E-03	0	0.0E+00	9.7E-09

Calculated Air Concentrations		Flux Emission Rate from Surface (ug/day/m ²)	Concentration in Crawl Space (ug/m ³)	Concentration in Dwelling (µg/m ³)	Crawl Space to Indoor Air Attenuation Factor	Outdoor Air Concentration (µg/m ³)
Trichloroethene	1.9E+05	8.0E+00	3.7E-01	0.076	4.9	7.4E-03
Tetrachloroethene	1.3E+02	2.8E-03	1.3E-04	0.00003	4.8	2.6E-06
cis-1,2-Dichloroethene	9.7E+03	1.1E+00	5.0E-02	0.010	4.8	1.0E-03

Toxicity and Dermal Absorption Parameters C = calculated from chronic value, Ch = chronic value adopted

Chemical				Oral/D	ermal Exposur	es		
	Non- Threshold Threshold Slope Factor Chronic TDI				Threshold Subchronic TDI	Dermal Permeability	Dermal Adsorption	
	(mg/kg/day) ⁻¹		(mg/kg/day)		(mg/kg/day)		(cm/hr)	(Unitless)
Trichloroethene	7.80E-04	WHO	0.0015	WHO	0.0015	Ch	1.16E-02	0.03
Tetrachloroethene			0.014	WHO	0.014	Ch	3.34E-02	0.03
						-	4.405.00	0.00
cis-1,2-Dichloroethene			0.006	RIVM	0.3	C	1.10E-02	0.03

Toxicity and Derma

C = calculated from chronic va

		mical Inhalation Exposures						
		Inhalation	Exposures	3		TDI)		
Inhalation Unit Risk (ug/m³) ⁻¹		Threshold Chronic TC (mg/m ³)		Threshold Subchronic TC (mg/m ³)		Chronic Assessment (%)	Subchronic Assessment	
4.00E-06	USEPA	0.002	USEPA	0.002	Ch	10%	10%	
		0.25	WHO	0.25	WHO	10%	10%	
		0.007	USEPA	0.79	ATSDR	0%	0%	
	Unit Risk (ug/m ³) ⁻¹	Inhalation Unit Risk (ug/m³) ⁻¹	Threshold Inhalation Chronic Unit Risk TC (ug/m³) ⁻¹ (mg/m³) 4.00E-06 USEPA 0.002 0.25 0.25	Threshold Inhalation Chronic Unit Risk TC (ug/m³) ⁻¹ (mg/m³) 4.00E-06 USEPA 0.002 USEPA 0.25 WHO	Inhalation Chronic Subchronic Unit Risk TC TC (ug/m³) ⁻¹ (mg/m³) (mg/m³) 4.00E-06 USEPA 0.002 USEPA 0.25 WHO 0.25	Threshold Threshold Inhalation Chronic Subchronic Unit Risk TC TC (ug/m³) ⁻¹ (mg/m³) (mg/m³) 4.00E-06 USEPA 0.002 USEPA 0.002 Ch 0.25 WHO 0.25 WHO 0.25 WHO	Threshold Threshold Threshold Inhalation Chronic Subchronic Chronic Unit Risk TC TC Assessment (ug/m³) ⁻¹ (mg/m³) (mg/m³) (%) 4.00E-06 USEPA 0.002 USEPA 0.002 Ch 0.25 WHO 0.25 WHO 10%	

Chronic Exposure General Data/ Equat				Units			tial Exposure Par ion Indoors by R			
Exposure Paramete	rs									
Exposure Frequency (EF))			days/year	365	Exposure every day				
Exposure Duration (ED)				years	35	Total lifetime exposu	re of 35 years as per	enHealth 2012		
Averaging Time - NonThr	eshold (ATc)			hours	613200	USEPA 2009	A 2009			
Averaging Time - Thresho	old (ATn)			hours	306600	USEPA 2009				
Exposure Time (ET)				hr/day	20					
Fraction Inhaled from Cor	ntaminated Source (I	FI)		-	1	1 Assume all of residence above impacts				
Intake Factor = ET*FI*EF	F*ED			-	4.2E-01	NonThreshold				
AT					8.3E-01	Threshold				
NonThreshold Risk = Inha	alation Exposure Co	ncentration x Unit	Risk	SEPA 2009)						
Inhalation Exposure Cond NonThreshold Risk = Inha Hazard Quotients = (Inha Chemical	alation Exposure Co	ncentration x Unit centration/Allowa	Risk	SEPA 2009)	Concentration	Daily E	xposure	Calcula	ted Risk	
NonThreshold Risk = Inha Hazard Quotients = (Inha	alation Exposure Co lation Exposure Con	ncentration x Unit centration/Allowa y Data	Risk	SEPA 2009) Chronic TC Allowable	Concentration	Daily E Inhalation	xposure Inhalation	Calcula NonThreshold		
NonThreshold Risk = Inha Hazard Quotients = (Inha	alation Exposure Col lation Exposure Con Toxicit	ncentration x Unit centration/Allowa y Data	Risk ble TC air)							
NonThreshold Risk = Inha Hazard Quotients = (Inha	alation Exposure Con lation Exposure Con Toxicit Inhalation Unit	ncentration x Unit centration/Allowa y Data	Risk ble TC air) Background Intake (%	Chronic TC Allowable for Assessment (TC-		Inhalation Exposure Concentration -	Inhalation Exposure Concentration -	NonThreshold	Chronic Hazar	
NonThreshold Risk = Inha Hazard Quotients = (Inha	alation Exposure Co lation Exposure Con Toxicit Inhalation Unit Risk	ncentration x Unit centration/Allowa y Data Chronic TC air	Risk ble TC air) Background Intake (%	Chronic TC Allowable for Assessment (TC- Background)	in Indoor Air	Inhalation Exposure Concentration - NonThreshold	Inhalation Exposure Concentration - Threshold	NonThreshold Risk	Chronic Hazar Quotient	
NonThreshold Risk = Inha Hazard Quotients = (Inha Chemical	alation Exposure Co lation Exposure Con Toxicit Inhalation Unit Risk	ncentration x Unit centration/Allowa y Data Chronic TC air	Risk ble TC air) Background Intake (%	Chronic TC Allowable for Assessment (TC- Background)	in Indoor Air	Inhalation Exposure Concentration - NonThreshold	Inhalation Exposure Concentration - Threshold (mg/m ³)	NonThreshold Risk (unitless)	Chronic Hazar Quotient (unitless)	
NonThreshold Risk = Inha Hazard Quotients = (Inha Chemical Frichloroethene	alation Exposure Co lation Exposure Con Toxicit Inhalation Unit Risk (mg/m ³) ⁻¹	ncentration x Unit centration/Allowa y Data Chronic TC air (mg/m³)	Risk ble TC air) Background Intake (% Chronic TC)	Chronic TC Allowable for Assessment (TC- Background) (mg/m ³)	in Indoor Air (mg/m ³)	Inhalation Exposure Concentration - NonThreshold (mg/m ³)	Inhalation Exposure Concentration - Threshold (mg/m ³) TOTAL	NonThreshold Risk (unitless) 1.3E-7	Chronic Hazar Quotient (unitless) 3.6E-2	
NonThreshold Risk = Inha Hazard Quotients = (Inha	alation Exposure Co lation Exposure Con Toxicit Inhalation Unit Risk (mg/m ³) ⁻¹	ncentration x Unit centration/Allowa y Data Chronic TC air (mg/m ³) 2.0E-03	Risk ble TC air) Background Intake (% Chronic TC) 10%	Chronic TC Allowable for Assessment (TC- Background) (mg/m ³) 1.8E-03	in Indoor Air (mg/m³) 7.6E-05	Inhalation Exposure Concentration - NonThreshold (mg/m ³) 3.2E-05	Inhalation Exposure Concentration - Threshold (mg/m ³) TOTAL 6.3E-05	NonThreshold Risk (unitless) 1.3E-7 1.3E-7	Chronic Hazar Quotient (unitless) 3.6E-2 3.5E-2	

Site Specific Physical Input Parameters	Units	Abbrev.	Value	Comments
Depth of Top of Contaminated Aquifer (BGS)	[m]	d	1.1	Calculated from layers
Thickness of Capillary Fringe	[m]	cd	0.2	Estimated for Sandy Clay
Thickness of Vadose Zone	[m]	vd	0.9	Calculated from layers
Average Soil Temperature	[C]	Т	25	site-specific assumption
Vadose Zone Layer 1 Characteristics				CRC Care - Sand, Sandy Clay
Depth of Layer 1 from Foundations	[m]	vd1	0	Typical depth from logs
Moisture Content	[ml/g]	mocon	0.08	Estimated for CRC Care - Sand, Sandy Clay
Organic Carbon Fraction	-	foc	0.003	Estimated for CRC Care - Sand, Sandy Clay
Soil Bulk Density	[g/ml]	rhob	1.625	Estimated for CRC Care - Sand, Sandy Clay
Density of Solids	[g/ml]	sd	2.65	default
Total Soil Porosity	[ml/ml]	theta	0.39	1 - (rhob/sd)
Volumetric Water Content	[ml/ml]	wacon	0.130	mocon*rhob
Volumetric Air Content	[ml/ml]	acon	0.257	theta-wacon
Vadose Zone Layer 2 Characteristics				Sandy Clay
Depth of Layer 2 to Water Table	[m]	vd2	0.9	Typical depth from logs
Moisture Content	[ml/g]	mocon2	0.26	Estimated for Sandy Clay
Organic Carbon Fraction	-	foc2	0.003	Estimated for Sandy Clay
Soil Bulk Density	[g/ml]	rhob2	1.56	Estimated for Sandy Clay
Density of Solids	[g/ml]	sd2	2.67	default
Total Soil Porosity	[ml/ml]	theta2	0.42	1 - (rhob2/sd2)
Volumetric Water Content	[ml/ml]	wacon2	0.406	mocon2*rhob2
Volumetric Air Content	[ml/ml]	acon2	0.010	theta2-wacon2
Capillary Fringe				
Volumetric Water Content	[ml/ml]	cfwacon	0.406	Value representative of capillary fringe, ASTM (2002)
Volumetric Air Content	[ml/ml]	cfacon	0.010	theta2-cfwacon

Receptor Specific Input Parameters	Units	Abbrev.	Value	Comments
Building Characteristics				Residential - Basement
Depth of Basement	[m]	basement	2.4	Depth of basement below ground level
Width of Building	[m]	bwidth	10	Assume whole building above source
Length of Building	[m]	blength	10	Assume whole building above source
Area of Emission - Building Area	[m ²]	emarea	196	Assume whole building above source
Foundation/wall thickness	[m]	fthick	0.1	Default Value BCA
Height of Room	[m]	boxh	2.4	Default Value for type of building, USEPA 2003
Hourly Volume Exchange of Fresh Air	[exch/hr]	exchanges	0.6	CRC CARE 2011 for residential
Fraction of Cracks in Walls and foundation	-	cracks	0.001	CRC CARE 2011
Qbuilding	[cm ³ /s]	Qb	40000	Calculated from building volume and exchange rate
Qsoil	[cm ³ /s]	Qs	163.3333333	Calculated from default of Qs:Qb (CRC Care 2010)
Ratio of Qs:Qb	-	Qs/Qb	0.005	Defaults are 0.005 (Res) and 0.001 (Comm) (CRC CARE)
Area of Cracks (ACrack)	[cm ²]	Ac	1960	Calculated from building area and crack ratio, USEPA 2003
Volumetric Water Content in foundation/wall cracks	[ml/ml]	fwacon	0.12	Default Value ASTM 1739-95
Volumetric Air Content in foundation/wall cracks	[ml/ml]	facon	0.26	Default Value ASTM 1739-95
Outdoor Air Characteristics				
Length of Contaminated Area	[m]	length	20	site-specific assumption
Width of Contaminated Area	[m]	width	20	site-specific assumption
Wind Speed Outdoors	[m/s]	wspd	2.5	site-specific assumption
Height of Outdoor Mixing Zone	[m]	outboxh	1.5	Default Value

Chemical Specific Parameters	Water Solubility (mg/L)	MW (g/mol)	Koc (cm³/g)	Air Diffusion Coefficient (cm²/s)	Water Diffusion Coefficient (cm ² /s)	Vapour Pressure (mmHg)	Henry's Law Constant (unitless)
Tetrachloroethene	206	165.83	1.07E+02	5.05E-02	9.46E-06	53.200	7.2E-01
Trichloroethene	1280.0	131.40	6.77E+01	6.87E-02	1.02E-05	72.50	4.03E-01
cis-1,2-dichloroethene	3500	96.95	3.55E+01	7.60E-02	1.13E-05	201.00	1.67E-01

Vapour Transport Calculations	Deff Layer 1 (cm ² /s)	Deff Layer 2 (cm ² /s)	Deff Foundations and Cracks (cm ² /s)	Deff Capillary Fringe (cm ² /s)	Total Effective Diffusion (cm ² /s) to indoor air
Tetrachloroethene	3.63E-3	3.80E-6	3.79E-3	3.80E-6	3.80E-6
Trichloroethene	4.94E-3	7.32E-6	5.15E-3	7.33E-6	7.32E-6
cis-1,2-dichloroethene	5.47E-3	1.94E-5	5.70E-3	1.95E-5	1.94E-5

Phase Partitioning Results	Dissolved Phase Concentration (mg/L)	Vapour Phase Concentration (g/cm ³)	Saturated Vapour Conentration (g/cm ³)	Free Phase Mole Fraction (mol/mol)	Concentration above Free Phase (g/cm ³)	Calculation Vapour Phase Concenration Adopted (g/cm ³)
Tetrachloroethene	0.179	1.3E-07	4.7E-04			1.3E-07
Trichloroethene	0.0781	3.1E-08	5.1E-04			3.1E-08
cis-1,2-dichloroethene	0.326	5.4E-08	1.0E-03			5.4E-08

Concentration at Source (ug/m ³)	Vapour Phase Concentration at Source (mg/m ³)	JE Attenuation Coefficient (unitless)	Concentration (mg/m ³)	Concentration (µg/m³)
1.3E+05	1.3E+02	1.7E-06	2.19E-04	0.2193
3.1E+04	3.1E+01	3.3E-06	1.0E-04	0.10
5.4E+04	5.4E+01	8.6E-06	4.7E-04	0.47
	Source (ug/m ³) 1.3E+05 3.1E+04	Source (ug/m³) Source (mg/m³) 1.3E+05 1.3E+02 3.1E+04 3.1E+01	Source (ug/m³) Source (mg/m³) (unitless) 1.3E+05 1.3E+02 1.7E-06 3.1E+04 3.1E+01 3.3E-06	Source (ug/m³) Source (mg/m³) (unitless) (mg/m³) 1.3E+05 1.3E+02 1.7E-06 2.19E-04 3.1E+04 3.1E+01 3.3E-06 1.0E-04

Calculated Air Concentrations ASTM Guidance (without advection)	Vapour Phase Concentration at Source (g/cm3)	Vapour Phase Concentration at Source (mg/m ³)	Emission Rate from Surface of Ground (g/s)	Indoor Air Concentration (mg/m ³)	Indoor Air Concentration (µg/m ³)	Outdoor Air Concentration (µg/m ³)
Tetrachloroethene	1.3E-07	1.3E+02	8.8E-09	1.03E-04	0.1026	7.5E-05
Trichloroethene	3.1E-08	3.1E+01	4.1E-09	4.6E-05	0.05	3.5E-05
cis-1,2-dichloroethene	5.4E-08	5.4E+01	1.9E-08	1.8E-04	0.18	1.6E-04

Toxicity and Dermal Absorption Parameters

C = calculated from chronic value, Ch = chronic value adopted

Chemical		Oral/Dermal Exposures												
	Non- Threshold Slope Factor		Threshold Chronic TDI		Threshold Subchronic TDI		Dermal Permeability	Dermal Adsorption						
	(mg/kg/day) ⁻¹	Ref	(mg/kg/day)	Ref	(mg/kg/day)	Ref	(cm/hr)	(Unitless)						
Tetrachloroethene			1.40E-02	ADWG/WHO		-	4.81E-02	3.00E-02						
Trichloroethene	7.80E-04	WHO	1.46E-03	WHO	1.46E-03	-	1.57E-02	3.00E-02						
cis-1,2-dichloroethene		-	2.00E-03	USEPA 2010	3.00E-01	ATSDR	1.49E-02	3.00E-02						
	-	-	-	-	-	-	-	-						
	-	-	-	-	-	-	-	-						
	-	-	-	-	-	-	-	-						
	-	-	-	-	-	-	-	-						
	-	-	-	-	-	-	-	-						
	-	-	-	-	-	-	-	-						
	-	-	-	-	-	-	-	-						
	-	-	-	-	-	-	-	-						
	-	-	-	-	-	-	-	-						
	-	-	-	-	-	-	-	-						
	-	-	-	-	-	-	-	-						
	-	-	-	-	-	-	-	-						
	-	-	-	-	-	-	-	-						
	-	-	-	-	-	-	-	-						
	-	-	-	-	-	-	-	-						

Toxicity and Derma

C = calculated from chronic values values and values of the chronic values of the chro

Chemical		Inhalation Exposures								
	Inhalation Unit Risk		Threshold Chronic TC	Threshold Chronic TDI		Threshold Subchronic TC		Chronic Assessment	Subchronic Assessment	
	(ug/m ³) ⁻¹	Ref	(mg/m ³)	(mg/kg/day)	Ref	(mg/m ³)	Ref	(%)		
Tetrachloroethene		-	2.00E-01		WHO	2.00E-01	-		10.00%	
Trichloroethene	4.10E-06	US EPA	2.00E-03	4.10E-06	US EPA	2.00E-03	-	10.00%	10.00%	
cis-1,2-dichloroethene		-	7.00E-03		USEPA 2010	7.90E-01	ATSDR			
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	

General Data/ Equatio Exposure Parameters Exposure Frequency (EF) Exposure Duration (ED) Body Weight (BW) Averaging Time - NonThresl Averaging Time - Threshold Advection Exposure Time (ET)	Term days/year Frequency (EF) days/year Duration (ED) years ht (BW) kg Time - NonThreshold (ATc) hours Time - Threshold (ATn) hours Y Time (ET) haled from Contaminated Source (FI) - tot = <u>ET*FI*EF*ED</u> -				Residential Exposure Parameters (RME) Inhalation Indoors by Adult 365 Exposure every day 14 Exposure for 30 years less childhood exposure 70 USEPA 1989 and CSMS 1996 613200 USEPA 2009 122640 USEPA 2009 20 Time spent indoors (CRC CARE) less time spent in basement 1 Assume all of residence above groundwater/soils 1.7E-01 NonThreshold 8.3E-01 Threshold				
Inhalation Exposure Concern NonThreshold Risk = Inhala Hazard Quotients = (Inhalati Chemical	tion Exposure Conce on Exposure Concer Toxici	entration x Unit Ris	sk		Concentration	Daily E Inhalation	xposure Inhalation	Calcula NonThreshold	ted Risk Chronic Hazard
	(mg/m ³) ⁻¹	(mg/m ³)	Intake (% Chronic TC)	for Assessment (TC- Background)	(mg/m ³)	Exposure Concentration - NonThreshold (mg/m ³)	Exposure Concentration - Threshold (mg/m ³)	(unitless)	Quotient
	(((-(TOTAL	7.0E-8	1.0E-1
									1.06-1
Tetrachloroethene		2.0E-01		2 0E-01	2 2E-04	3 7E-05		1.02.0	0.1F_/
Tetrachloroethene	4 1F-03	2.0E-01	10%	2.0E-01 1.8E-03	2.2E-04 1.0E-04	3.7E-05	1.8E-04		9.1E-4 4.7E-2
Trichloroethene	4.1E-03	2.0E-03	10%	1.8E-03	1.0E-04	1.7E-05	1.8E-04 8.5E-05	 7.0E-8	4.7E-2
	4.1E-03		10%				1.8E-04	 7.0E-8	
Trichloroethene		2.0E-03 7.0E-03		1.8E-03 7.0E-03	1.0E-04 4.7E-04	1.7E-05 7.8E-05	1.8E-04 8.5E-05 3.9E-04	 7.0E-8 	4.7E-2 5.6E-2
Trichloroethene	-	2.0E-03 7.0E-03 -		1.8E-03 7.0E-03	1.0E-04 4.7E-04 -	1.7E-05 7.8E-05 -	1.8E-04 8.5E-05 3.9E-04	 7.0E-8 	4.7E-2 5.6E-2 -
Trichloroethene	-	2.0E-03 7.0E-03 - -	-	1.8E-03 7.0E-03 -	1.0E-04 4.7E-04 - -	1.7E-05 7.8E-05 -	1.8E-04 8.5E-05 3.9E-04 - -	 7.0E-8 	4.7E-2 5.6E-2 - -
Trichloroethene		2.0E-03 7.0E-03 - - -		1.8E-03 7.0E-03 - -	1.0E-04 4.7E-04 - - -	1.7E-05 7.8E-05 - - -	1.8E-04 8.5E-05 3.9E-04 - - -	 7.0E-8 - - - -	4.7E-2 5.6E-2 - - -
Trichloroethene		2.0E-03 7.0E-03 - - -		1.8E-03 7.0E-03 - -	1.0E-04 4.7E-04 - - -	1.7E-05 7.8E-05 - - - - -	1.8E-04 8.5E-05 3.9E-04 - - - -	 7.0E-8 - - - -	4.7E-2 5.6E-2 - - - -
Trichloroethene		2.0E-03 7.0E-03 - - - - -	- - - - -	1.8E-03 7.0E-03 - - - - - -	1.0E-04 4.7E-04 - - - - -	1.7E-05 7.8E-05 - - - - - - - -	1.8E-04 8.5E-05 3.9E-04 - - - - - - -	 7.0E-8 - - - - - - - - -	4.7E-2 5.6E-2 - - - - - - - -
Trichloroethene		2.0E-03 7.0E-03 - - - - - - - - - - -	- - - - - - - - -	1.8E-03 7.0E-03 - - - - - - - - - - - -	1.0E-04 4.7E-04 - - - - - - - - - - -	1.7E-05 7.8E-05 - - - - - - - - - - - - - - - -	1.8E-04 8.5E-05 3.9E-04 - - - - - - - - - - - - - -	 7.0E-8 - - - - - - - - - - - - - - - -	4.7E-2 5.6E-2 - - - - - - - - - - - - - - -
Trichloroethene		2.0E-03 7.0E-03 - - - - - - - - - -	- - - - - - -	1.8E-03 7.0E-03 - - - - - - - - - - - - - - -	1.0E-04 4.7E-04 - - - - - - - - - - - - -	1.7E-05 7.8E-05 - - - - - - - - - - - - -	1.8E-04 8.5E-05 3.9E-04 - - - - - - - - - - - - - - - - - -	 7.0E-8 - - - - - - - - - - - - - -	4.7E-2 5.6E-2 - - - - - - - - - - - - - - - - - -
Trichloroethene		2.0E-03 7.0E-03 - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	1.8E-03 7.0E-03 - - - - - - - - - - - - - - -	1.0E-04 4.7E-04 - - - - - - - - - - - - - -	1.7E-05 7.8E-05 - - - - - - - - - - - - - - - - - -	1.8E-04 8.5E-05 3.9E-04 - - - - - - - - - - - - -	 7.0E-8 - - - - - - - - - - - - - - - -	4.7E-2 5.6E-2 - - - - - - - - - - - - - - - - - -
Trichloroethene		2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - -	1.8E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	1.0E-04 4.7E-04 - - - - - - - - - - - - - - - - - -	1.7E-05 7.8E-05 - - - - - - - - - - - - - - - - - -	1.8E-04 8.5E-05 3.9E-04 - - - - - - - - - - - - -	 7.0E-8 - - - - - - - - - - - - - - - - -	4.7E-2 5.6E-2 - - - - - - - - - - - - -
Trichloroethene		2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	1.8E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	1.0E-04 4.7E-04 - - - - - - - - - - - - - - - - - -	1.7E-05 7.8E-05 - - - - - - - - - - - - - - - - - -	1.8E-04 8.5E-05 3.9E-04 - - - - - - - - - - - - -	 7.0E-8 - - - - - - - - - - - - - - - - -	4.7E-2 5.6E-2 - - - - - - - - - - - - - - - - - -
Trichloroethene		2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	1.8E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	1.0E-04 4.7E-04 - - - - - - - - - - - - - - - - - -	1.7E-05 7.8E-05 - - - - - - - - - - - - - - - - - -	1.8E-04 8.5E-05 3.9E-04 - - - - - - - - - - - - -	 7.0E-8 - - - - - - - - - - - - - - - - -	4.7E-2 5.6E-2 - - - - - - - - - - - - - - - - - -
Trichloroethene		2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	1.8E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	1.0E-04 4.7E-04 - - - - - - - - - - - - - - - - - -	1.7E-05 7.8E-05 - - - - - - - - - - - - - - - - - -	1.8E-04 8.5E-05 3.9E-04 - - - - - - - - - - - - - - - - - -	 7.0E-8 - - - - - - - - - - - - - - - - -	4.7E-2 5.6E-2 - - - - - - - - - - - - - - - - - -

Chronic Exposures							Exposure Parame			
General Data/ Equations	S			Units		Inhalat	ion Outdoors by	Adult		
Exposure Parameters										
Exposure Frequency (EF)				days/year	365	Exposure every day				
Exposure Duration (ED) Body Weight (BW)				years	14	Exposure for 30 year USEPA 1989 and CS		sure		
Averaging Time - NonThresho				kg hours	70 613200	USEPA 1989 and CS USEPA 2009	SMS 1996			
Averaging Time - Threshold (A				hours	122640	USEPA 2009 USEPA 2009				
Advection	(III)			NA	122040	00LI A 2003				
Exposure Time (ET)				hr/day	2	CRC Care 2011				
Fraction Inhaled from Contami	inated Source (FI)			-	1		dence above groundwater/soils			
Intake Factor = ET*FI*EF*ED				-	1.7E-02	NonThreshold				
AT					8.3E-02	Threshold				
Inhalation Exposure Concentra NonThreshold Risk = Inhalatio Hazard Quotients = (Inhalatior	on Exposure Concentra n Exposure Concentra	ation x Unit Risk tion/Allowable TC								
Chemical	Toxicit	ty Data			Concentration	Daily E	xposure	Calcula	ted Risk	
	Inhalation Unit	Chronic TC air		Chronic TC Allowable	in Outdoor Air	Inhalation	Inhalation	NonThreshold	Chronic Hazard Quotient	
	Risk		Intake (% Chronic TC)	for Assessment (TC- Background)		Exposure Concentration - NonThreshold	Exposure Concentration - Threshold	Risk	Quotient	
		(mg/m ³)		Background)	(ma/m ³)	Concentration - NonThreshold	Concentration - Threshold			
	Risk (mg/m ³) ⁻¹	(mg/m³)			(mg/m ³)	Concentration	Concentration - Threshold (mg/m ³)	(unitless)	(unitless)	
Tetrachloroethene		(mg/m ³) 2.0E-01		Background)	(mg/m³) 7.5E-08	Concentration - NonThreshold	Concentration - Threshold			
Tetrachloroethene Trichloroethene				Background)		Concentration - NonThreshold (mg/m ³)	Concentration - Threshold (mg/m ³) TOTAL	(unitless) 2.4E-9	(unitless) 3.5E-3	
Trichloroethene	(mg/m ³) ⁻¹	2.0E-01	Chronic TC)	Background) (mg/m ³) 2.0E-01	7.5E-08	Concentration - NonThreshold (mg/m ³) 1.3E-09	Concentration - Threshold (mg/m ³) TOTAL 6.3E-09	(unitless) 2.4E-9	(unitless) 3.5E-3 3.1E-8	
Trichloroethene	(mg/m ³) ⁻¹	2.0E-01 2.0E-03	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03	7.5E-08 3.5E-05	Concentration - NonThreshold (mg/m ³) 1.3E-09 5.9E-07	Concentration - Threshold (mg/m ³) TOTAL 6.3E-09 2.9E-06	(unitless) 2.4E-9 2.4E-9	(unitless) 3.5E-3 3.1E-8 1.6E-3	
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03	2.0E-01 2.0E-03 7.0E-03	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03	7.5E-08 3.5E-05	Concentration - NonThreshold (mg/m ³) 1.3E-09 5.9E-07	Concentration - Threshold (mg/m ³) TOTAL 6.3E-09 2.9E-06	(unitless) 2.4E-9 2.4E-9 	(unitless) 3.5E-3 3.1E-8 1.6E-3 1.9E-3	
	(mg/m ³) ⁻¹ 4.1E-03 - - - -	2.0E-01 2.0E-03 7.0E-03	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - -	7.5E-08 3.5E-05	Concentration - NonThreshold (mg/m ³) 1.3E-09 5.9E-07	Concentration - Threshold (mg/m ³) TOTAL 6.3E-09 2.9E-06	(unitless) 2.4E-9 2.4E-9 	(unitless) 3.5E-3 3.1E-8 1.6E-3 1.9E-3 	
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - -	2.0E-01 2.0E-03 7.0E-03 - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - -	7.5E-08 3.5E-05	Concentration - NonThreshold (mg/m ³) 1.3E-09 5.9E-07	Concentration - Threshold (mg/m ³) TOTAL 6.3E-09 2.9E-06	(unitless) 2.4E-9 2.4E-9 	(unitless) 3.5E-3 3.1E-8 1.6E-3 1.9E-3 	
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - -	7.5E-08 3.5E-05	Concentration - NonThreshold (mg/m ³) 1.3E-09 5.9E-07	Concentration - Threshold (mg/m ³) TOTAL 6.3E-09 2.9E-06	(unitless) 2.4E-9 2.4E-9 	(unitless) 3.5E-3 3.1E-8 1.6E-3 1.9E-3 	
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - - - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - - - - -	7.5E-08 3.5E-05	Concentration - NonThreshold (mg/m ³) 1.3E-09 5.9E-07	Concentration - Threshold (mg/m ³) TOTAL 6.3E-09 2.9E-06	(unitless) 2.4E-9 2.4E-9 	(unitless) 3.5E-3 3.1E-8 1.6E-3 1.9E-3 	
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - - - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - - -	7.5E-08 3.5E-05	Concentration - NonThreshold (mg/m ³) 1.3E-09 5.9E-07	Concentration - Threshold (mg/m ³) TOTAL 6.3E-09 2.9E-06	(unitless) 2.4E-9 2.4E-9 	(unitless) 3.5E-3 3.1E-8 1.6E-3 1.9E-3 	
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - - - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - - - - -	7.5E-08 3.5E-05	Concentration - NonThreshold (mg/m ³) 1.3E-09 5.9E-07	Concentration - Threshold (mg/m ³) TOTAL 6.3E-09 2.9E-06	(unitless) 2.4E-9 2.4E-9 	(unitless) 3.5E-3 3.1E-8 1.6E-3 1.9E-3 	
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - - - - - - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	7.5E-08 3.5E-05	Concentration - NonThreshold (mg/m ³) 1.3E-09 5.9E-07	Concentration - Threshold (mg/m ³) TOTAL 6.3E-09 2.9E-06	(unitless) 2.4E-9 2.4E-9 	(unitless) 3.5E-3 3.1E-8 1.6E-3 1.9E-3 	
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - - - - - - - - - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	7.5E-08 3.5E-05	Concentration - NonThreshold (mg/m ³) 1.3E-09 5.9E-07	Concentration - Threshold (mg/m ³) TOTAL 6.3E-09 2.9E-06	(unitless) 2.4E-9 2.4E-9 	(unitless) 3.5E-3 3.1E-8 1.6E-3 1.9E-3 	
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - - - - - - - - - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	7.5E-08 3.5E-05	Concentration - NonThreshold (mg/m ³) 1.3E-09 5.9E-07	Concentration - Threshold (mg/m ³) TOTAL 6.3E-09 2.9E-06	(unitless) 2.4E-9 2.4E-9 	(unitless) 3.5E-3 3.1E-8 1.6E-3 1.9E-3 	
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - - - - - - - - - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	7.5E-08 3.5E-05	Concentration - NonThreshold (mg/m ³) 1.3E-09 5.9E-07	Concentration - Threshold (mg/m ³) TOTAL 6.3E-09 2.9E-06	(unitless) 2.4E-9 2.4E-9 	(unitless) 3.5E-3 3.1E-8 1.6E-3 1.9E-3 	
Trichloroethene	(mg/m ³) ⁻¹ 4.1E-03 - - - - - - - - - - - - - - - - - -	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	Chronic TC)	Background) (mg/m ³) 2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	7.5E-08 3.5E-05	Concentration - NonThreshold (mg/m ³) 1.3E-09 5.9E-07	Concentration - Threshold (mg/m ³) TOTAL 6.3E-09 2.9E-06	(unitless) 2.4E-9 2.4E-9 	(unitless) 3.5E-3 3.1E-8 1.6E-3 1.9E-3 	

<u>^</u>...

							_			
Chronic Exposure							Exposure Param			
General Data/ Equat				Units		Inhalation Inc	doors by Older Cl	hild (5-15 yrs)		
Exposure Paramete										
Exposure Frequency (EF)			days/year	365	Exposure every day				
Exposure Duration (ED)				years	10	Total exposure during	g ages 6 to 15 years			
Body Weight (BW)				kg	34.5	USEPA 1989 and CS	SMS 1996			
Averaging Time - NonThr	reshold (ATc)			hours	613200	USEPA 2009				
Averaging Time - Thresh	old (ATn)			hours	87600	USEPA 2009				
Advection				Y						
Exposure Time (ET)				hr/day	20.0	Time spent indoors (s (CRC CARE) less time spent in basement			
Fraction Inhaled from Cor	ntaminated Source	(FI)		-	1	Assume all of resider	dence above groundwater/soils			
Intake Factor = ET*FI*E	F*ED			-	1.2E-01	NonThreshold				
AT					8.3E-01	Threshold				
Inhalation Exposure Cond	centration = Concer	ntration in Air x Int	take Factor (ref: U	SEPA 2009)	4					
NonThreshold Risk = Inh				,						
Hazard Quotients = (Inha	lation Exposure Co	ncentration/Allowa	able TC air)							
Chemical	Tovici	ty Data			Concentration	Daily F	xposure	Calcula	ted Risk	
Chennical		Chronic TC air	Deelement	Chronic TC	in Indoor Air	Inhalation	Inhalation	NonThreshold	Chronic Hazard	
	Risk	Chronic IC air		Allowable for	in Indoor Air			Risk		
	RISK		Intake (%			Exposure	Exposure Concentration -	RISK	Quotient	
			Chronic TC)	Assessment (TC-		Concentration - NonThreshold	Threshold			
				Background)						
	(mg/m ³) ⁻¹	(mg/m ³)		(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(unitless)	(unitless)	
							TOTAL	5.0E-8	1.0E-1	
Tetrachloroethene		2.0E-01		2.0E-01	2.2E-04	2.6E-05	1.8E-04		9.1E-04	
Trichloroethene	4.1E-03	2.0E-03	10%	1.8E-03	1.0E-04	1.2E-05	8.5E-05	5.0E-08	4.7E-02	
cis-1,2-dichloroethene		7.0E-03		7.0E-03	4.7E-04	5.6E-05	3.9E-04		5.6E-02	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
		-	-	-	-	-	-	-	-	

 \uparrow

Chronic Exposure							xposure Parame		
General Data/ Equa				Units		Inhalation Outd	loors by Older Cl	hild (5-15 yrs)	
Exposure Paramete									
Exposure Frequency (EF				days/year	365	Exposure every day			
Exposure Duration (ED)				years	10	Total exposure durin			
Body Weight (BW)				kg	34.5	USEPA 1989 and CS	SMS 1996		
Averaging Time - NonThi				hours	613200	USEPA 2009			
Averaging Time - Thresh	nold (ATn)			hours	87600	USEPA 2009			
Advection				NA					
Exposure Time (ET)		(F 1)		hr/day	2	CRC CARE			
Fraction Inhaled from Co		(FI)		-	1		nce above groundwa	ter/soils	
Intake Factor = ET*FI*E				-	1.2E-02	NonThreshold			
AT					8.3E-02	Threshold			
Inhalation Exposure Con	centration = Concer	ntration in Air x Ini	take Factor (ref: 11	SEPA 2009)					
NonThreshold Risk = Inh				JEI / 2003)					
Hazard Quotients = (Inha									
Chemical	Toxici	ty Data			Concentration	Daily E	xposure	Calcula	ted Risk
	Inhalation Unit	Chronic TC air	Background	Chronic TC	in Outdoor Air	Inhalation	Inhalation	NonThreshold	Chronic Hazar
	Risk		Intake (%	Allowable for		Exposure	Exposure	Risk	Quotient
			Chronic TC)	Assessment (TC-		Concentration -	Concentration -		
				Background)		NonThreshold	Threshold		
	(mg/m ³) ⁻¹	(mg/m ³)		(mg/m ³)	(3)	3	3.		(
				(ma/m)	(ma/m_)	(ma/m [°])	(ma/mč)	(unitless)	(unitiess)
	(119/111)	(ing/in)		(mg/m)	(mg/m ³)	(mg/m ³)	(mg/m ³) TOTAL	(unitless)	(unitless)
Tetrachloroethene	(ing/in)						TOTAL	(unitless) 1.7E-9	3.5E-3
		2.0E-01	10%	2.0E-01	7.5E-08	8.9E-10	TOTAL 6.3E-09	1.7E-9	3.5E-3 3.1E-8
Trichloroethene	4.1E-03	2.0E-01 2.0E-03	10%	2.0E-01 1.8E-03	7.5E-08 3.5E-05	8.9E-10 4.2E-07	TOTAL 6.3E-09 2.9E-06		3.5E-3 3.1E-8 1.6E-3
Trichloroethene		2.0E-01	10%	2.0E-01	7.5E-08	8.9E-10	TOTAL 6.3E-09	1.7E-9 1.7E-9	3.5E-3 3.1E-8
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03		2.0E-01 1.8E-03 7.0E-03	7.5E-08 3.5E-05	8.9E-10 4.2E-07	TOTAL 6.3E-09 2.9E-06	1.7E-9 1.7E-9 	3.5E-3 3.1E-8 1.6E-3 1.9E-3
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03	-	2.0E-01 1.8E-03 7.0E-03	7.5E-08 3.5E-05	8.9E-10 4.2E-07	TOTAL 6.3E-09 2.9E-06	1.7E-9 1.7E-9 	3.5E-3 3.1E-8 1.6E-3 1.9E-3
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 -	-	2.0E-01 1.8E-03 7.0E-03 -	7.5E-08 3.5E-05	8.9E-10 4.2E-07	TOTAL 6.3E-09 2.9E-06	1.7E-9 1.7E-9 	3.5E-3 3.1E-8 1.6E-3 1.9E-3
Frichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - -	-	2.0E-01 1.8E-03 7.0E-03 - -	7.5E-08 3.5E-05	8.9E-10 4.2E-07	TOTAL 6.3E-09 2.9E-06	1.7E-9 1.7E-9 	3.5E-3 3.1E-8 1.6E-3 1.9E-3
Frichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - -	- - - -	2.0E-01 1.8E-03 7.0E-03 - - - -	7.5E-08 3.5E-05	8.9E-10 4.2E-07	TOTAL 6.3E-09 2.9E-06	1.7E-9 1.7E-9 	3.5E-3 3.1E-8 1.6E-3 1.9E-3
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - - - - -	- - - - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - -	7.5E-08 3.5E-05	8.9E-10 4.2E-07	TOTAL 6.3E-09 2.9E-06	1.7E-9 1.7E-9 	3.5E-3 3.1E-8 1.6E-3 1.9E-3
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - - - - - -	- - - - - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - - -	7.5E-08 3.5E-05	8.9E-10 4.2E-07	TOTAL 6.3E-09 2.9E-06	1.7E-9 1.7E-9 	3.5E-3 3.1E-8 1.6E-3 1.9E-3
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - -	- - - - - - - - - - - - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	7.5E-08 3.5E-05	8.9E-10 4.2E-07	TOTAL 6.3E-09 2.9E-06	1.7E-9 1.7E-9 -	3.5E-3 3.1E-8 1.6E-3 1.9E-3
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - -	- - - - - - - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	7.5E-08 3.5E-05	8.9E-10 4.2E-07	TOTAL 6.3E-09 2.9E-06	1.7E-9 1.7E-9 -	3.5E-3 3.1E-8 1.6E-3 1.9E-3
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	7.5E-08 3.5E-05	8.9E-10 4.2E-07	TOTAL 6.3E-09 2.9E-06	1.7E-9 1.7E-9 -	3.5E-3 3.1E-8 1.6E-3 1.9E-3
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	7.5E-08 3.5E-05	8.9E-10 4.2E-07	TOTAL 6.3E-09 2.9E-06	1.7E-9 1.7E-9 -	3.5E-3 3.1E-8 1.6E-3 1.9E-3
Trichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	7.5E-08 3.5E-05	8.9E-10 4.2E-07	TOTAL 6.3E-09 2.9E-06	1.7E-9 1.7E-9 -	3.5E-3 3.1E-8 1.6E-3 1.9E-3
Trichloroethene	4.1E-03 	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	7.5E-08 3.5E-05	8.9E-10 4.2E-07	TOTAL 6.3E-09 2.9E-06	1.7E-9 1.7E-9 -	3.5E-3 3.1E-8 1.6E-3 1.9E-3
Tetrachloroethene Trichloroethene cis-1,2-dichloroethene	4.1E-03	2.0E-01 2.0E-03 7.0E-03 - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	2.0E-01 1.8E-03 7.0E-03 - - - - - - - - - - - - -	7.5E-08 3.5E-05	8.9E-10 4.2E-07	TOTAL 6.3E-09 2.9E-06	1.7E-9 1.7E-9 -	3.5E-3 3.1E-8 1.6E-3 1.9E-3

		moulo								
Chronic Exposure							Exposure Param			
General Data/ Equa	tions			Units		Inhalation In	doors by Young	Child (0-5 yrs)		
Exposure Paramete	ers									
Exposure Frequency (EF				days/year	365	Exposure every day				
Exposure Duration (ED)	,			years	6	Lifetime exposure fo				
Body Weight (BW)				kg	13.2	NEPM 1999 and CS				
Averaging Time - NonThr	reshold (ATc)			hours	613200	USEPA 2009				
Averaging Time - Thresh	old (ATn)			hours	52560	USEPA 2009				
Advection				Y						
Exposure Time (ET)				hr/day	20.0	Time spent indoors	ors (CRC CARE) less time spent in basement			
Fraction Inhaled from Cor	ntaminated Source	(FI)		-	1	Assume all of reside	all of residence above groundwater/soils			
Intake Factor = ET*FI*EI	F*ED			-	7.1E-02	NonThreshold				
AT					8.3E-01	Threshold				
Hazard Quotients = (Inha Chemical	Toxici	ty Data	,		Concentration		xposure		ted Risk	
	Inhalation Unit Risk	Chronic TC air	Background Intake (% Chronic TC)	Chronic TC Allowable for Assessment (TC-	in Indoor Air	Inhalation Exposure Concentration -	Inhalation Exposure Concentration -	NonThreshold Risk	Chronic Hazard Quotient	
				Background)		NonThreshold	Threshold			
	(mg/m ³) ⁻¹	(mg/m ³)		(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(unitless)	(unitless)	
							TOTAL	3.0E-8	1.0E-1	
Tetrachloroethene		2.0E-01		2.0E-01	2.2E-04	1.6E-05	1.8E-04	-	9.1E-4	
Trichloroethene	4.1E-03	2.0E-03	1.0E-01	1.8E-03	1.0E-04	7.3E-06	8.5E-05	3.0E-8	4.7E-2	
cis-1,2-dichloroethene		7.0E-03		7.0E-03	4.7E-04	3.4E-05	3.9E-04	-	5.6E-2	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	

Add comments regarding concentrations here

 \wedge

General Data/ Equat Exposure Paramete Exposure Frequency (EF Exposure Duration (ED) Body Weight (BW) Averaging Time - NonThr Averaging Time - Thresho Advection	rs) reshold (ATc)			Units days/year years kg hours hours NA	365 6 13.2 613200 52560	Inhalation Out Exposure every day Lifetime exposure fo NEPM 1999 and CS USEPA 2009 USEPA 2009	sure for age group and CSMS 1996			
Exposure Time (ET) Fraction Inhaled from Cor	ntaminated Source	(FI)		hr/day -	2	CRC CARE Assume all of reside	nce above groundwat	ter/soils		
Intake Factor = ET*FI*EF*ED AT - 7.1E-03 NonThreshold 8.3E-02 Threshold										
NonThreshold Risk = Inha Hazard Quotients = (Inha Chemical	lation Exposure Co. Toxici		able TC air)	Chronic TC Allowable for Assessment (TC- Background)	Concentration in Outdoor Air	Daily E Inhalation Exposure Concentration - NonThreshold	xposure Inhalation Exposure Concentration - Threshold	Calcula NonThreshold Risk	ted Risk Chronic Hazard Quotient	
	, <u>3</u> 1-1	(, 3)		- · · ·	, , , 3`,					
	(mg/m ³) ⁻¹	(mg/m ³)		(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(unitless)	(unitless)	
							TOTAL	1.0E-9	3.5E-3	
Tetrachloroethene	4.45.00	2.0E-01	400/	2.0E-01	7.5E-08	5.4E-10	6.3E-09	-	3.1E-8	
Trichloroethene cis-1.2-dichloroethene	4.1E-03	2.0E-03 7.0E-03	10%	1.8E-03 7.0E-03	3.5E-05 1.6E-04	2.5E-07 1.2E-06	2.9E-06 1.3E-05	1.0E-9	1.6E-3 1.9E-3	
cis-1,2-alchioroethene		7.0E-03	-	7.0E-03	1.0E-04	1.2E-00	1.3E-05	-	1.9E-3 -	
	-	-	-					-	-	
	_	-		-				-		
		-	-	-						
		-	-	-				-	-	
	-							-	-	
		-	-	-						
			-	-				-	-	
	- - - -	- - -		-				-	-	
	- - - - - -	- - - -	- - - -	- - -						
		- - - - -	- - - - -	- - - -				- - - -	- - - -	
		- - - - - -	- - - - - -	- - - - - -				- - - - -	- - - -	
		- - - - - - - -	- - - - - - -	- - - - - - - -				- - - - - - -	- - - - - - -	
		- - - - - - - - - -	- - - - - - - - -	- - - - - - - - - - - -				- - - - - -	- - - - - - -	
		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -				- - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
		- - - - - - - - - - - - - - -	- - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -				- - - - - - - - -	- - - - - - - - - - -	

Summary of Risk for RME Exposure

Pathway	NonThreshold Risks	Threshold Risks Hazard Index	
Adult Residents (Chronic Exposures)			
Inhalation of COPC Indoors	7.0E-08	0.104	
Inhalation of COPC Outdoors	2.4E-09	0.0035461	
Incidental Ingestion of COPC in Water			
Dermal Contact with COPC in Water			
Total Risk	7.3E-08	0.108	
Older Child Residents (Chronic Exposures)			
Inhalation of COPC Indoors	5.0E-08	0.104	
Inhalation of COPC Outdoors	1.7E-09	0.0035461	
Incidental Ingestion of COPC in Water			
Dermal Contact with COPC in Water			
Total Risk	5.2E-08	0.108	
Young Child Residents (Chronic Exposures)			
Inhalation of COPC Indoors	3.0E-08	0.104	
Inhalation of COPC Outdoors	1.0E-09	0.0035461	
Incidental Ingestion of COPC in Water			
Dermal Contact with COPC in Water			
Total Risk	3.1E-08	0.108	
Lifetime Risk (Chronic)	1.6E-07	0.108	

Site Specific Physical Input Parameters	Units	Abbrev.	Value	Comments
Thickness of Soil above Contaminated layer	[m]	d	2	Calculated from layers to indoor
Thickness of Contaminated Layer	[m]	surfd	2	Estimated from site data
Soil Temperature	[C]	Т	25	site-specific assumption
Vadose Zone Layer 1 Characteristics				CRC Care - Sand, Sandy Clay
Depth of Layer 1	[m]	vd1	0	Typical depth from logs
Moisture Content	[cm ³ /g]	mocon	0.08	Estimated for CRC Care - Sand, Sandy Clay
Organic Carbon Fraction	-	foc	0.003	Estimated for CRC Care - Sand, Sandy Clay
Soil Bulk Density	[g/cm ³]	rhob	1.625	Estimated for CRC Care - Sand, Sandy Clay
Density of Solids	[g/cm ³]	sd	2.65	site-specific assumption
Total Soil Porosity	[cm ³ /cm ³]	theta	0.39	1 - (rhob/sd)
Volumetric Water Content	[cm ³ /cm ³]	wacon	0.130	mocon*rhob
Volumetric Air Content	[cm ³ /cm ³]	acon	0.257	theta-wacon
Vadose Zone Layer 2 Characteristics				CRC Care - Sand, Sandy Clay
Depth of Layer 2	[m]	vd2	2	Typical depth from logs
Moisture Content	[cm ³ /g]	mocon2	0.08	Estimated for CRC Care - Sand, Sandy Clay
Organic Carbon Fraction	-	foc2	0.003	Estimated for CRC Care - Sand, Sandy Clay
Soil Bulk Density	[g/cm ³]	rhob2	1.625	Estimated for CRC Care - Sand, Sandy Clay
Density of Solids	[g/cm ³]	sd2	2.65	site-specific assumption
Total Soil Porosity	[cm ³ /cm ³]	theta2	0.39	1 - (rhob2/sd2)
Volumetric Water Content	[cm ³ /cm ³]	wacon2	0.130	mocon2*rhob2
Volumetric Air Content	[cm ³ /cm ³]	acon2	0.257	theta2-wacon2

Receptor Specific Input Parameters	Units	Abbrev.	Value	Comments
Building Characteristics				Commercial - Slab On Ground
Depth of Basement	[m]	basement	0	Depth of basement below ground level
Width of Building	[m]	bwidth	65	Assume whole building above source
Length of Building	[m]	blength	50	Assume whole building above source
Area of Building Below Ground Level	[m ²]	area	3250	Calculated from building dimensions
Foundation/wall thickness	[m]	fthick	0.15	Default Value
Building Mixing Height	[m]	boxh	3	Default Value for type of building, USEPA 2003
Hourly Volume Exchange of Fresh Air	[exch/hr]	exchanges	0.83	Minimum exchange rate as per AS 1668.2 and BCA
Fraction of Cracks in Walls and foundation	-	cracks	0.001	Default Value for type of building, USEPA 2003
Qbuilding	[cm ³ /s]	Qb	2247917	Calculated, USEPA 2003
Qsoil	[cm ³ /s]	Qs	2708	Calculated from default of 5L/min (USEPA 2003)
Ratio of Qs:Qb	-	Qs/Qb	0.001	Default is 0.005 res and 0.001 comm/ind (CRC)
Area of Cracks (Acrack)	[cm ²]	Ac	32500	Calculated from building area and crack ratio, USEPA 2003
Volumetric Water Content in foundation/wall cracks	[cm ³ /cm ³]	fwacon	0.12	Default Value
Volumetric Air Content in foundation/wall cracks	[cm ³ /cm ³]	facon	0.26	Default Value
Outdoor Air Characteristics				
Length of Contaminated Area	[m]	length	20	site-specific assumption
Width of Contaminated Area	[m]	width	20	site-specific assumption
Wind Speed Outdoors	[m/s]	wspd	2.5	site-specific assumption
Height of Outdoor Mixing Zone	[m]	outboxh	1.5	Default Value

Chemical Specific Parameters	Water Solubility (mg/L)	MW (g/mol)	Koc (cm³/g)	Air Diffusion Coefficient (cm ² /s)	Water Diffusion Coefficient (cm ² /s)	Vapour Pressure (mmHg)	Henry's Law Constant (unitless)
Tetrachloroethene	206	165.83	1.07E+02	5.05E-02	9.46E-06	5.32E+01	7.24E-01
Trichloroethene	1280	131.4	6.77E+01	6.87E-02	1.02E-05	7.25E+01	4.03E-01
cis-1,2-dichloroethene	3500	96.95	3.55E+01	7.60E-02	1.13E-05	2.01E+02	1.67E-01

Vapour Transport Calculations	Deff Layer 1 (cm²/s)	Deff Layer 2 (cm²/s)	Deff Foundations and Cracks (cm ² /s)	Total Effective Diffusion (GW to surface) (cm ² /s)
Tetrachloroethene	3.63E-3	3.63E-3	3.79E-3	3.63E-3
Trichloroethene	4.94E-3	4.94E-3	5.15E-3	4.94E-3
cis-1,2-dichloroethene	5.47E-3	5.47E-3	5.70E-3	5.47E-3

Subsurface Soils Phase Partitioning Results	Soil Concentration (mg/kg)	Vapour Phase Concentration (g/cm³)	Saturated Soil Concentration (mg/kg)	Saturated Vapour Concentration (g/cm ³)	Free Phase Mole Fraction (mol/mol)	Concentration above Free Phase (g/cm ³)	Calculated Vapour Phase used in Calculation (g/cm ³)
Tetrachloroethene Trichloroethene cis-1,2-dichloroethene			1.1E+02 4.4E+02 7.5E+02	4.7E-05 5.1E-05 1.0E-04			

Calculated Air Concentrations (with Advection)	Measured Soil Vapour (ug/m ³)	Vapour Phase Concentration at Source (ug/m ³)	Vapour Phase Concentration at Source (mg/m ³)	JE Attenuation Coefficient (unitless)	Emission Rate to Indoor Air (g/s)	Depletion Time (years)	Indoor Air Concentration (µg/m ³)
Tetrachloroethene	28000	28000	2.8E+01	2.2E-04	1.4E-05		6.038
Trichloroethene	26000	26000	2.6E+01	2.8E-04	1.6E-05		7.165
cis-1,2-dichloroethene	8480	8480	8.5E+00	3.0E-04	5.7E-06		2.524

Calculated Air Concentrations ASTM Guidance (without Advection)	Vapour Phase Concentration at Source (g/cm3)	Emission Rate from Surface of Ground (g/s)
Tetrachloroethene	2.8E-08	1.7E-05
Trichloroethene	2.6E-08	2.1E-05
cis-1,2-dichloroethene	8.5E-09	7.5E-06

Emission Rate into building (g/s)	Depletion Time (years)	Indoor Air Concentration (µg/m ³)	Outdoor Air Concentration (µg/m ³)
2.3E-07		0.10080	0.02713
2.9E-07		0.127	0.034
1.0E-07		0.04594	0.01237

Toxicity and Dermal Absorption Parameters C = calculated from chronic value, Ch = chronic value adopted

Chemical				<u>Oral/De</u>	ermal Exposures			
	Non-Threshold Slope Factor (mg/kg/day) ⁻¹		Threshold Chronic TDI (mg/kg/day)		Threshold Subchronic TDI (mg/kg/day)		Dermal Permeability (cm/hr)	Dermal Adsorption (Unitless)
Tetrachloroethene	0.00E+00	0.00E+00	1.40E-02	ADWG/WHO	0.00E+00	-	4.81E-02	3.00E-02
Trichloroethene	7.80E-04	WHO	1.46E-03	WHO	1.46E-03	-	1.57E-02	3.00E-02
cis-1,2-dichloroethene	0.00E+00	-	2.00E-03	USEPA 2010	3.00E-01	ATSDR	1.49E-02	3.00E-02
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-

Toxicity and Dermal Absorptio C = calculated from chronic value

Chemical			Inhalation E	<u>xposures</u>			<u>Occupatio</u>	onal Exposure	Backgroun	d Intake (% TDI)
	Inhalation Unit Risk (ug/m ³) ⁻¹		Threshold Chronic TC (mg/m³)		Threshold Subchronic TC (mg/m ³)		TWA (mg/m³)	TWA (mg/kg/day)	Chronic Assessment (%)	Subchronic Assessment
Fetrachloroethene	0.00E+00	-	2.00E-01	WHO	2.00E-01	-	340.0	48.57	0.00E+00	1.00E-01
Frichloroethene	4.10E-06	US EPA	2.00E-03	US EPA	2.00E-03	-	54.0	7.71	1.00E-01	1.00E-01
cis-1,2-dichloroethene	0.00E+00	-	7.00E-03	USEPA 2010	7.90E-01	ATSDR	793.0	113.29	0.00E+00	0.00E+00
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-

Chronic Exposures			Exposure Parameters (RME)
General Data/ Equations	Units		Inhalation Indoors by Worker
Exposure Parameters			
Exposure Frequency (EF)	days/year	240	Exposure for 5 days per week minus 4 weeks holidays
Exposure Duration (ED)	years	30	Duration of exposure as per NEPM 1999 and USEPA 1989
Averaging Time - NonThreshold (ATc)	hours	613200	USEPA 2009
Averaging Time - Threshold (ATn)	hours	262800	USEPA 2009
Advection	Ŷ		
Exposure Time (ET)	hr/day	8	Time spent indoors at work
Fraction Inhaled from Contaminated Source (FI)	-	1	Assume all of workplace above groundwater/soils
ntake Factor = <u>ET*FI*EF*ED</u>	-	9.4E-02	NonThreshold
AT		2.2E-01	Threshold

NonThreshold Risk = Inhalation Exposure Concentration x Unit Risk

Hazard Quotients = (Inhalation Exposure Concentration/Allowable TC air)

Chemical	Toxici Inhalation Unit Risk	ty Data Chronic TC air	Background Intake (% Chronic TC)	Chronic TC Allowable for Assessment (TC- Background)	Depletion Time	Exposure Duration (ED)	Averaging Time (AT) Non- Threshold	Averaging Time (AT) Threshold	Intake Factor (Non- Threshold)	Intake Factor (Threshold)	Concentration in Indoor Air	Daily Ex Inhalation Exposure Concentration - NonThreshold	Inhalation Exposure Concentration	Calculate NonThreshold Risk	ed Risk Chronic Hazard Quotient
	(mg/m ³) ⁻¹	(mg/m ³)		(mg/m ³)	(years)	(years)	(hours)	(hours)			(mg/m ³)	(mg/m ³)	(mg/m ³)	(unitless)	(unitless)
					NOT USED								TOTAL	2.8E-6	9.6E-1
Tetrachloroethene		2.0E-01		2.0E-01			6.1E+05	6.1E+04			6.0E-03	5.7E-04	1.3E-03		6.6E-3
Trichloroethene	4.1E-03	2.0E-03	10%	1.8E-03			6.1E+05	6.1E+04			7.2E-03	6.7E-04	1.6E-03	2.8E-6	8.7E-1
cis-1,2-dichloroethene		7.0E-03		7.0E-03			6.1E+05	6.1E+04			2.5E-03	2.4E-04	5.5E-04		7.9E-2
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
					•						-	-	-	-	-

Chronic Exposu							re Parameters								
General Data/ Equ				Units		Inhalatio	n Outdoors by	Norker							
Exposure Parame Exposure Frequency (I Exposure Duration (EE Averaging Time - Non Averaging Time - Three Advection	EF) D) Threshold (ATc)			days/year years hours hours NA	240 30 613200 262800	Exposure for 5 days Duration of exposure USEPA 2009 USEPA 2009									
Exposure Time (ET)				hr/day	2	Time spent outdoors	at work								
Fraction Inhaled from (Contaminated Sourc	e (FI)		-	1	Assume all of workpl		ater/soils							
Intake Factor = <u>ET*FI</u> A [·]				-	2.3E-02 5.5E-02	NonThreshold Threshold									
Inhalation Exposure Co NonThreshold Risk = I Hazard Quotients = (In Chemical	Inhalation Exposure	Concentration : Concentration/A	k Unit Risk	ei. USEFA 2009)							Concentration	Daily E	xposure	Calculat	ed Risk
	Inhalation Unit		Background	Chronic TC Allowable	Depletion Time	Exposure Duration	Averaging Time	Averaging Time	Intake Factor	Intake Factor	in Outdoor Air	Inhalation	Inhalation	NonThreshold	
	Risk	air	Intake (% Chronic TC)	for Assessment (TC- Background)		(ED)	(AT) Non- Threshold		(Non- Threshold)	(Threshold)		Exposure Concentration - NonThreshold	Exposure Concentration - Threshold	Risk	Quotient
	(mg/m ³) ⁻¹	(mg/m ³)		(mg/m ³)	(years)	(years)	(hours)	(hours)			(mg/m ³)	(mg/m ³)	(mg/m ³)	(unitless)	(unitless)
					NOT USED								TOTAL	3.3E-9	1.1E-3
		2.0E-01		2.0E-01			6.1E+05	6.1E+04			2.7E-05	6.4E-07	1.5E-06		7.4E-6 1.0E-3
Tetrachloroethene	4.45.00		400/	1 05 00				0.45.04			0.45.05			0.05.0	
Trichloroethene	4.1E-03	2.0E-03	10%	1.8E-03			6.1E+05	6.1E+04			3.4E-05	8.0E-07	1.9E-06	3.3E-9	
		2.0E-03 7.0E-03		7.0E-03	-		6.1E+05	6.1E+04	_	_	1.2E-05	8.0E-07 2.9E-07	1.9E-06 6.8E-07		9.7E-5
Trichloroethene		2.0E-03	10% - -		-							8.0E-07	1.9E-06	3.3E-9	
Trichloroethene	-	2.0E-03 7.0E-03	-	7.0E-03			6.1E+05 -	6.1E+04 -			1.2E-05 -	8.0E-07 2.9E-07 -	1.9E-06 6.8E-07	-	9.7E-5 -
Trichloroethene		2.0E-03 7.0E-03	-	7.0E-03 - -	-	-	6.1E+05 - -	6.1E+04 - -	-	-	1.2E-05 - -	8.0E-07 2.9E-07 -	1.9E-06 6.8E-07 -	-	9.7E-5 - -
Trichloroethene	- - -	2.0E-03 7.0E-03 - - -		7.0E-03 - - -	-	-	6.1E+05 - - -	6.1E+04 - - -	-	-	1.2E-05 - - -	8.0E-07 2.9E-07 - - -	1.9E-06 6.8E-07 - -	-	9.7E-5 - - -
Trichloroethene		2.0E-03 7.0E-03 - - - - - -	- - - - -	7.0E-03 	- - - - -	- - - -	6.1E+05 - - - - - - -	6.1E+04 - - - - - - -	- - - - -	- - - - -	1.2E-05 - - - - - - - - -	8.0E-07 2.9E-07 - - - - - - -	1.9E-06 6.8E-07 - - - - - -	- - - - -	9.7E-5 - - - - - - - -
Trichloroethene		2.0E-03 7.0E-03 - - - - - - -	- - - - - -	7.0E-03 - - - - - - - - -	- - - - - - -	- - - - - -	6.1E+05 - - - - - - - - -	6.1E+04 - - - - - - - - -	- - - - - -	- - - - - - -	1.2E-05 	8.0E-07 2.9E-07 - - - - - - - - - - - -	1.9E-06 6.8E-07 - - - - - - - - - -	- - - - - -	9.7E-5 - - - - - - - - - -
Trichloroethene	- - - - - - - - - - -	2.0E-03 7.0E-03 - - - - - - - - - -	- - - - - - - - - - -	7.0E-03 - - - - - - - - - - - -	- - - - - - -	- - - - - - -	6.1E+05 - - - - - - - - - - - -	6.1E+04 - - - - - - - - - - -	- - - - - - - -	- - - - - -	1.2E-05 	8.0E-07 2.9E-07 - - - - - - - - - - - - -	1.9E-06 6.8E-07 - - - - - - - - - - - - -	- - - - - - -	9.7E-5 - - - - - - - - - -
Trichloroethene		2.0E-03 7.0E-03 - - - - - - -	- - - - - -	7.0E-03 - - - - - - - - -	- - - - - - -	- - - - - -	6.1E+05 - - - - - - - - -	6.1E+04 - - - - - - - - -	- - - - - -	- - - - - - -	1.2E-05 	8.0E-07 2.9E-07 - - - - - - - - - - - -	1.9E-06 6.8E-07 - - - - - - - - - -	- - - - - -	9.7E-5 - - - - - - - - - -
Trichloroethene		2.0E-03 7.0E-03 - - - - - - - - - - -	- - - - - - - - - - -	7.0E-03 - - - - - - - - - - - - - -	- - - - - - - - -	- - - - - - - - - -	6.1E+05 - - - - - - - - - - - - -	6.1E+04 - - - - - - - - - - - -	- - - - - - - - - - -	- - - - - - - -	1.2E-05	8.0E-07 2.9E-07 - - - - - - - - - - - - -	1.9E-06 6.8E-07 - - - - - - - - - -	- - - - - - - - -	9.7E-5 - - - - - - - - - - - -
Trichloroethene		2.0E-03 7.0E-03 - - - - - - - - - - - - - -	- - - - - - - - - - - - - - -	7.0E-03 	- - - - - - - - - -	- - - - - - - - - -	6.1E+05 - - - - - - - - - - - - - - - - -	6.1E+04 - - - - - - - - - - - - - -	- - - - - - - - - - - - -	- - - - - - - - - -	1.2E-05 	8.0E-07 2.9E-07 - - - - - - - - - - - -	1.9E-06 6.8E-07 - - - - - - - - - - - - -		9.7E-5 - - - - - - - - - - - -
Trichloroethene		2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	7.0E-03 	- - - - - - - - - - - -	- - - - - - - - - - - - -	6.1E+05 - - - - - - - - - - - - - - -	6.1E+04 - - - - - - - - - - - - - - -	- - - - - - - - - - - -	- - - - - - - - - - - - -	1.2E-05 	8.0E-07 2.9E-07 - - - - - - - - - - - - - - - - - -	1.9E-06 6.8E-07 - - - - - - - - - - - - - - - - - -		9.7E-5 - - - - - - - - - - - - - - -
Trichloroethene		2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - -	7.0E-03	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	6.1E+05 - - - - - - - - - - - - - - - - - - -	6.1E+04 - - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - -	1.2E-05	8.0E-07 2.9E-07 - - - - - - - - - - - - - - - - - -	1.9E-06 6.8E-07 - - - - - - - - - - - - - - - - - -		9.7E-5 - - - - - - - - - - - - - - - - - -
Trichloroethene		2.0E-03 7.0E-03 - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	7.0E-03	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	6.1E+05 - - - - - - - - - - - - - - - - - - -	6.1E+04 - - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - -	1.2E-05	8.0E-07 2.9E-07 - - - - - - - - - - - - - - - - - -	1.9E-06 6.8E-07 - - - - - - - - - - - - - - - - -		9.7E-5

Summary of Risk for RME Exposure

Pathway	NonThreshold Risks	Threshold Risks
		Hazard Index

Long-Term Workers (Chronic Exposures)

Inhalation of COPC Indoors	2.8E-06	9.6E-01
Inhalation of COPC Outdoors	3.3E-09	1.1E-03
Incidental Ingestion of COPC in Soil		
Dermal Contact with COPC in Soil		
Total Risk	2.8E-06	9.6E-01

APPENDIX C SA HEALTH AND SA EPA TCE ACTION LEVEL RESPONSE FRAMEWORK

Predicted indoor air level range of TCE and associated actions

Indoor air level: Nothing detected No Action Safe	Indoor air level: Above detection - less than 2 (µg/m³) Validation Safe	Indoor air level: 2 - less than 20 (µg/m*) Interventional Interventional No immediate health concerns Murther assessment necessary	Indoor air level: 20 - less than 200 (µg/m ³) INTERVENTION There may be a health risk Interediately look at next steps and further assessment	<text><text><section-header><section-header><section-header></section-header></section-header></section-header></text></text>
 No further action The area is safe 	 The area is safe Consider monitoring and evaluation (if appropriate) and based on site specific conditions 	 Further assessment of individual circumstances and property construction Validate results to improve site specific understanding: external soil, sub slab or crawl space vapour Consider mitigation and remediation strategies if required 	 Assessment of individual circumstances and property construction Rapid assessment to improve site specific understanding: external soil, sub slab or crawl space vapour Consider mitigation and remediation or consider relocation 	 Assessment of individual circumstances and property construction Accelerated assessment program at property level Recommend relocation or urgent mitigation strategies Remediate sources as necessary, implement further mitigation strategies

Total number of properties in each range for the entire assessment area

The total number of properties in the "No Action" range is an estimate only. All totals include vacant properties, reserves and houses.

www.CPMPproject.sa.gov.au

CPMPproject@sa.gov.au

3 December 2014